Nuprl Lemma : bar-separation_wf

[T,S:Type].  (BarSep(T;S) ∈ ℙ')


Proof




Definitions occuring in Statement :  bar-separation: BarSep(T;S) uall: [x:A]. B[x] prop: member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T bar-separation: BarSep(T;S) prop: so_lambda: λ2x.t[x] implies:  Q so_apply: x[s]
Lemmas referenced :  all_wf list_wf dec-predicate_wf jbar_wf or_wf tbar_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule thin instantiate lemma_by_obid sqequalHypSubstitution isectElimination functionEquality cumulativity hypothesisEquality hypothesis universeEquality lambdaEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache

Latex:
\mforall{}[T,S:Type].    (BarSep(T;S)  \mmember{}  \mBbbP{}')



Date html generated: 2016_05_14-PM-04_09_25
Last ObjectModification: 2015_12_26-PM-07_54_33

Theory : fan-theorem


Home Index