Step * of Lemma complement-unbounded-tree

[T:Type]. ∀A:{A:n:ℕ ⟶ (ℕn ⟶ T) ⟶ 𝔹Tree(A) ∧ Unbounded(A)} bar(¬(A))) supposing ¬¬Fan(T)
BY
(InstLemma `fan-bar-not-unbounded` []
   THEN RepeatFor (ParallelLast')
   THEN RepeatFor ((D THENA Auto))
   THEN DVar `A'
   THEN FHyp [-1]
   THEN Auto) }


Latex:


Latex:
\mforall{}[T:Type].  \mforall{}A:\{A:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  T)  {}\mrightarrow{}  \mBbbB{}|  Tree(A)  \mwedge{}  Unbounded(A)\}  .  (\mneg{}bar(\mneg{}(A)))  supposing  \mneg{}\mneg{}Fan(T)


By


Latex:
(InstLemma  `fan-bar-not-unbounded`  []
  THEN  RepeatFor  2  (ParallelLast')
  THEN  RepeatFor  2  ((D  0  THENA  Auto))
  THEN  DVar  `A'
  THEN  FHyp  3  [-1]
  THEN  Auto)




Home Index