Nuprl Lemma : complement-unbounded-tree
∀[T:Type]. ∀A:{A:n:ℕ ⟶ (ℕn ⟶ T) ⟶ 𝔹| Tree(A) ∧ Unbounded(A)} . (¬bar(¬(A))) supposing ¬¬Fan(T)
Proof
Definitions occuring in Statement : 
altneg: ¬(A)
, 
alttree: Tree(A)
, 
altunbounded: Unbounded(A)
, 
altfan: Fan(T)
, 
altbar: bar(X)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
bool: 𝔹
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
true: True
, 
nat: ℕ
, 
prop: ℙ
, 
squash: ↓T
, 
cand: A c∧ B
, 
and: P ∧ Q
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
istype-void, 
altbar_wf, 
altfan_wf, 
altunbounded_wf, 
iff_weakening_equal, 
subtype_rel_self, 
altneg-altneg, 
istype-universe, 
bool_wf, 
int_seg_wf, 
istype-nat, 
true_wf, 
squash_wf, 
alttree_wf, 
altneg_wf, 
fan-bar-not-unbounded
Rules used in proof : 
Error :inhabitedIsType, 
Error :functionIsTypeImplies, 
Error :productIsType, 
Error :setIsType, 
voidElimination, 
independent_pairFormation, 
baseClosed, 
imageMemberEquality, 
sqequalRule, 
because_Cache, 
universeEquality, 
instantiate, 
natural_numberEquality, 
Error :functionIsType, 
Error :universeIsType, 
equalitySymmetry, 
equalityTransitivity, 
imageElimination, 
Error :lambdaEquality_alt, 
applyEquality, 
promote_hyp, 
productElimination, 
independent_functionElimination, 
dependent_functionElimination, 
rename, 
setElimination, 
Error :lambdaFormation_alt, 
independent_isectElimination, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
hypothesis, 
Error :isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
extract_by_obid, 
introduction, 
cut
Latex:
\mforall{}[T:Type].  \mforall{}A:\{A:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  T)  {}\mrightarrow{}  \mBbbB{}|  Tree(A)  \mwedge{}  Unbounded(A)\}  .  (\mneg{}bar(\mneg{}(A)))  supposing  \mneg{}\mneg{}Fan(T)
Date html generated:
2019_06_20-PM-02_46_40
Last ObjectModification:
2019_06_07-AM-11_16_26
Theory : fan-theorem
Home
Index