Nuprl Lemma : complement-unbounded-tree

[T:Type]. ∀A:{A:n:ℕ ⟶ (ℕn ⟶ T) ⟶ 𝔹Tree(A) ∧ Unbounded(A)} bar(¬(A))) supposing ¬¬Fan(T)


Proof




Definitions occuring in Statement :  altneg: ¬(A) alttree: Tree(A) altunbounded: Unbounded(A) altfan: Fan(T) altbar: bar(X) int_seg: {i..j-} nat: bool: 𝔹 uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] not: ¬A and: P ∧ Q set: {x:A| B[x]}  function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  rev_implies:  Q iff: ⇐⇒ Q guard: {T} subtype_rel: A ⊆B true: True nat: prop: squash: T cand: c∧ B and: P ∧ Q false: False implies:  Q not: ¬A all: x:A. B[x] uimplies: supposing a member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  istype-void altbar_wf altfan_wf altunbounded_wf iff_weakening_equal subtype_rel_self altneg-altneg istype-universe bool_wf int_seg_wf istype-nat true_wf squash_wf alttree_wf altneg_wf fan-bar-not-unbounded
Rules used in proof :  Error :inhabitedIsType,  Error :functionIsTypeImplies,  Error :productIsType,  Error :setIsType,  voidElimination independent_pairFormation baseClosed imageMemberEquality sqequalRule because_Cache universeEquality instantiate natural_numberEquality Error :functionIsType,  Error :universeIsType,  equalitySymmetry equalityTransitivity imageElimination Error :lambdaEquality_alt,  applyEquality promote_hyp productElimination independent_functionElimination dependent_functionElimination rename setElimination Error :lambdaFormation_alt,  independent_isectElimination hypothesisEquality thin isectElimination sqequalHypSubstitution hypothesis Error :isect_memberFormation_alt,  sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution extract_by_obid introduction cut

Latex:
\mforall{}[T:Type].  \mforall{}A:\{A:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  T)  {}\mrightarrow{}  \mBbbB{}|  Tree(A)  \mwedge{}  Unbounded(A)\}  .  (\mneg{}bar(\mneg{}(A)))  supposing  \mneg{}\mneg{}Fan(T)



Date html generated: 2019_06_20-PM-02_46_40
Last ObjectModification: 2019_06_07-AM-11_16_26

Theory : fan-theorem


Home Index