Nuprl Lemma : fan-bar-not-unbounded
∀[T:Type]. ∀A:n:ℕ ⟶ (ℕn ⟶ T) ⟶ 𝔹. (bar(A) 
⇒ (¬(Tree(¬(A)) ∧ Unbounded(¬(A))))) supposing ¬¬Fan(T)
Proof
Definitions occuring in Statement : 
altneg: ¬(A)
, 
alttree: Tree(A)
, 
altunbounded: Unbounded(A)
, 
altfan: Fan(T)
, 
altbar: bar(X)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
bool: 𝔹
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
true: True
, 
sq_stable: SqStable(P)
, 
subtract: n - m
, 
less_than': less_than'(a;b)
, 
subtype_rel: A ⊆r B
, 
altneg: ¬(A)
, 
le: A ≤ B
, 
squash: ↓T
, 
less_than: a < b
, 
alttree: Tree(A)
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
assert: ↑b
, 
bnot: ¬bb
, 
guard: {T}
, 
sq_type: SQType(T)
, 
bfalse: ff
, 
lelt: i ≤ j < k
, 
int_seg: {i..j-}
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
it: ⋅
, 
unit: Unit
, 
bool: 𝔹
, 
prop: ℙ
, 
top: Top
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
ge: i ≥ j 
, 
nat: ℕ
, 
altunbounded: Unbounded(A)
, 
exists: ∃x:A. B[x]
, 
altubar: uniformBar(X)
, 
and: P ∧ Q
, 
altfan: Fan(T)
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
true_wf, 
squash_wf, 
subtype_rel_self, 
le-add-cancel, 
add_functionality_wrt_le, 
less-iff-le, 
sq_stable__le, 
add-associates, 
add-commutes, 
minus-one-mul-top, 
add-swap, 
minus-one-mul, 
minus-add, 
condition-implies-le, 
not-le-2, 
istype-false, 
int_seg_subtype, 
subtype_rel_function, 
assert_of_bnot, 
int_seg_properties, 
istype-universe, 
altfan_wf, 
int_seg_wf, 
istype-nat, 
altbar_wf, 
altunbounded_wf, 
altneg_wf, 
alttree_wf, 
less_than_wf, 
assert_wf, 
iff_weakening_uiff, 
assert-bnot, 
bool_subtype_base, 
bool_wf, 
subtype_base_sq, 
bool_cases_sqequal, 
eqff_to_assert, 
istype-less_than, 
int_formula_prop_less_lemma, 
intformless_wf, 
decidable__lt, 
assert_of_lt_int, 
eqtt_to_assert, 
lt_int_wf, 
istype-le, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
istype-void, 
int_formula_prop_and_lemma, 
istype-int, 
itermVar_wf, 
itermAdd_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
decidable__le, 
nat_properties
Rules used in proof : 
functionExtensionality, 
hyp_replacement, 
baseClosed, 
imageMemberEquality, 
minusEquality, 
imageElimination, 
universeEquality, 
Error :isectIsTypeImplies, 
Error :functionIsTypeImplies, 
Error :functionIsType, 
cumulativity, 
instantiate, 
Error :equalityIstype, 
equalitySymmetry, 
equalityTransitivity, 
Error :productIsType, 
applyEquality, 
equalityElimination, 
Error :inhabitedIsType, 
because_Cache, 
Error :universeIsType, 
independent_pairFormation, 
sqequalRule, 
voidElimination, 
Error :isect_memberEquality_alt, 
int_eqEquality, 
Error :lambdaEquality_alt, 
Error :dependent_pairFormation_alt, 
approximateComputation, 
independent_isectElimination, 
unionElimination, 
isectElimination, 
extract_by_obid, 
natural_numberEquality, 
rename, 
setElimination, 
addEquality, 
Error :dependent_set_memberEquality_alt, 
productElimination, 
hypothesis, 
hypothesisEquality, 
dependent_functionElimination, 
promote_hyp, 
independent_functionElimination, 
sqequalHypSubstitution, 
thin, 
Error :lambdaFormation_alt, 
cut, 
introduction, 
Error :isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[T:Type]
    \mforall{}A:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  T)  {}\mrightarrow{}  \mBbbB{}.  (bar(A)  {}\mRightarrow{}  (\mneg{}(Tree(\mneg{}(A))  \mwedge{}  Unbounded(\mneg{}(A)))))  supposing  \mneg{}\mneg{}Fan(T)
Date html generated:
2019_06_20-PM-02_46_38
Last ObjectModification:
2019_06_07-AM-11_14_59
Theory : fan-theorem
Home
Index