Nuprl Lemma : fan-bar-not-unbounded

[T:Type]. ∀A:n:ℕ ⟶ (ℕn ⟶ T) ⟶ 𝔹(bar(A)  (Tree(¬(A)) ∧ Unbounded(¬(A))))) supposing ¬¬Fan(T)


Proof




Definitions occuring in Statement :  altneg: ¬(A) alttree: Tree(A) altunbounded: Unbounded(A) altfan: Fan(T) altbar: bar(X) int_seg: {i..j-} nat: bool: 𝔹 uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] not: ¬A implies:  Q and: P ∧ Q function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  true: True sq_stable: SqStable(P) subtract: m less_than': less_than'(a;b) subtype_rel: A ⊆B altneg: ¬(A) le: A ≤ B squash: T less_than: a < b alttree: Tree(A) iff: ⇐⇒ Q rev_implies:  Q assert: b bnot: ¬bb guard: {T} sq_type: SQType(T) bfalse: ff lelt: i ≤ j < k int_seg: {i..j-} uiff: uiff(P;Q) ifthenelse: if then else fi  btrue: tt it: unit: Unit bool: 𝔹 prop: top: Top satisfiable_int_formula: satisfiable_int_formula(fmla) or: P ∨ Q decidable: Dec(P) ge: i ≥  nat: altunbounded: Unbounded(A) exists: x:A. B[x] altubar: uniformBar(X) and: P ∧ Q altfan: Fan(T) false: False not: ¬A implies:  Q all: x:A. B[x] uimplies: supposing a member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  true_wf squash_wf subtype_rel_self le-add-cancel add_functionality_wrt_le less-iff-le sq_stable__le add-associates add-commutes minus-one-mul-top add-swap minus-one-mul minus-add condition-implies-le not-le-2 istype-false int_seg_subtype subtype_rel_function assert_of_bnot int_seg_properties istype-universe altfan_wf int_seg_wf istype-nat altbar_wf altunbounded_wf altneg_wf alttree_wf less_than_wf assert_wf iff_weakening_uiff assert-bnot bool_subtype_base bool_wf subtype_base_sq bool_cases_sqequal eqff_to_assert istype-less_than int_formula_prop_less_lemma intformless_wf decidable__lt assert_of_lt_int eqtt_to_assert lt_int_wf istype-le int_formula_prop_wf int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma istype-void int_formula_prop_and_lemma istype-int itermVar_wf itermAdd_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf full-omega-unsat decidable__le nat_properties
Rules used in proof :  functionExtensionality hyp_replacement baseClosed imageMemberEquality minusEquality imageElimination universeEquality Error :isectIsTypeImplies,  Error :functionIsTypeImplies,  Error :functionIsType,  cumulativity instantiate Error :equalityIstype,  equalitySymmetry equalityTransitivity Error :productIsType,  applyEquality equalityElimination Error :inhabitedIsType,  because_Cache Error :universeIsType,  independent_pairFormation sqequalRule voidElimination Error :isect_memberEquality_alt,  int_eqEquality Error :lambdaEquality_alt,  Error :dependent_pairFormation_alt,  approximateComputation independent_isectElimination unionElimination isectElimination extract_by_obid natural_numberEquality rename setElimination addEquality Error :dependent_set_memberEquality_alt,  productElimination hypothesis hypothesisEquality dependent_functionElimination promote_hyp independent_functionElimination sqequalHypSubstitution thin Error :lambdaFormation_alt,  cut introduction Error :isect_memberFormation_alt,  sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[T:Type]
    \mforall{}A:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  T)  {}\mrightarrow{}  \mBbbB{}.  (bar(A)  {}\mRightarrow{}  (\mneg{}(Tree(\mneg{}(A))  \mwedge{}  Unbounded(\mneg{}(A)))))  supposing  \mneg{}\mneg{}Fan(T)



Date html generated: 2019_06_20-PM-02_46_38
Last ObjectModification: 2019_06_07-AM-11_14_59

Theory : fan-theorem


Home Index