Nuprl Lemma : eff-unique_wf

A:(𝔹 List) ⟶ ℙ(eff-unique(A) ∈ ℙ)


Proof




Definitions occuring in Statement :  eff-unique: eff-unique(A) list: List bool: 𝔹 prop: all: x:A. B[x] member: t ∈ T function: x:A ⟶ B[x]
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T eff-unique: eff-unique(A) uall: [x:A]. B[x] so_lambda: λ2x.t[x] implies:  Q prop: and: P ∧ Q nat: subtype_rel: A ⊆B so_apply: x[s] uimplies: supposing a le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A exists: x:A. B[x]
Lemmas referenced :  all_wf nat_wf bool_wf not_wf equal_wf exists_wf map_wf int_seg_wf subtype_rel_dep_function int_seg_subtype_nat false_wf subtype_rel_self upto_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin functionEquality hypothesis lambdaEquality because_Cache applyEquality hypothesisEquality productEquality natural_numberEquality setElimination rename independent_isectElimination independent_pairFormation universeEquality cumulativity

Latex:
\mforall{}A:(\mBbbB{}  List)  {}\mrightarrow{}  \mBbbP{}.  (eff-unique(A)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_14-PM-04_12_36
Last ObjectModification: 2015_12_26-PM-07_54_06

Theory : fan-theorem


Home Index