Nuprl Lemma : fan-iff-dfan-bool
Fan 
⇐⇒ Fan
Proof
Definitions occuring in Statement : 
fan: Fan
, 
dfan: Fan_d(T)
, 
bool: 𝔹
, 
iff: P 
⇐⇒ Q
Definitions unfolded in proof : 
dfan: Fan_d(T)
, 
fan: Fan
, 
ubar: ubar(T;X)
, 
tbar: tbar(T;X)
, 
dec-predicate: Decidable(X)
, 
dbar: dbar(T;X)
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
rev_implies: P 
⇐ Q
, 
cand: A c∧ B
, 
guard: {T}
Lemmas referenced : 
and_wf, 
dec-predicate_wf, 
list_wf, 
bool_wf, 
tbar_wf, 
all_wf, 
ubar_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
sqequalRule, 
independent_pairFormation, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
lemma_by_obid, 
isectElimination, 
hypothesis, 
hypothesisEquality, 
functionEquality, 
cumulativity, 
universeEquality, 
instantiate, 
lambdaEquality, 
dependent_functionElimination, 
independent_functionElimination
Latex:
Fan  \mLeftarrow{}{}\mRightarrow{}  Fan
Date html generated:
2016_05_14-PM-04_12_45
Last ObjectModification:
2015_12_26-PM-07_53_57
Theory : fan-theorem
Home
Index