Nuprl Lemma : fan-iff-dfan-bool

Fan ⇐⇒ Fan


Proof




Definitions occuring in Statement :  fan: Fan dfan: Fan_d(T) bool: 𝔹 iff: ⇐⇒ Q
Definitions unfolded in proof :  dfan: Fan_d(T) fan: Fan ubar: ubar(T;X) tbar: tbar(T;X) dec-predicate: Decidable(X) dbar: dbar(T;X) iff: ⇐⇒ Q and: P ∧ Q implies:  Q all: x:A. B[x] member: t ∈ T prop: uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s] rev_implies:  Q cand: c∧ B guard: {T}
Lemmas referenced :  and_wf dec-predicate_wf list_wf bool_wf tbar_wf all_wf ubar_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity sqequalRule independent_pairFormation lambdaFormation sqequalHypSubstitution productElimination thin cut lemma_by_obid isectElimination hypothesis hypothesisEquality functionEquality cumulativity universeEquality instantiate lambdaEquality dependent_functionElimination independent_functionElimination

Latex:
Fan  \mLeftarrow{}{}\mRightarrow{}  Fan



Date html generated: 2016_05_14-PM-04_12_45
Last ObjectModification: 2015_12_26-PM-07_53_57

Theory : fan-theorem


Home Index