Nuprl Lemma : fan_wf

Fan ∈ ℙ'


Proof




Definitions occuring in Statement :  fan: Fan prop: member: t ∈ T
Definitions unfolded in proof :  fan: Fan member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B prop: so_lambda: λ2x.t[x] implies:  Q so_apply: x[s] nat: uimplies: supposing a le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A all: x:A. B[x] int_seg: {i..j-}
Lemmas referenced :  all_wf list_wf bool_wf decidable_wf nat_wf exists_wf map_wf int_seg_wf subtype_rel_dep_function int_seg_subtype_nat false_wf subtype_rel_self upto_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep cut instantiate lemma_by_obid sqequalHypSubstitution isectElimination thin functionEquality hypothesis applyEquality lambdaEquality cumulativity hypothesisEquality universeEquality because_Cache natural_numberEquality setElimination rename independent_isectElimination independent_pairFormation lambdaFormation

Latex:
Fan  \mmember{}  \mBbbP{}'



Date html generated: 2016_05_14-PM-04_12_28
Last ObjectModification: 2015_12_26-PM-07_54_12

Theory : fan-theorem


Home Index