Nuprl Lemma : is-path_wf

[T:Type]. ∀[A:(T List) ⟶ ℙ]. ∀[f:ℕ ⟶ T].  (is-path(A;f) ∈ ℙ)


Proof




Definitions occuring in Statement :  is-path: is-path(A;f) list: List nat: uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T is-path: is-path(A;f) so_lambda: λ2x.t[x] nat: subtype_rel: A ⊆B so_apply: x[s] uimplies: supposing a le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: all: x:A. B[x]
Lemmas referenced :  all_wf nat_wf map_wf int_seg_wf subtype_rel_dep_function int_seg_subtype_nat false_wf upto_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis lambdaEquality applyEquality hypothesisEquality natural_numberEquality setElimination rename cumulativity independent_isectElimination independent_pairFormation lambdaFormation because_Cache axiomEquality equalityTransitivity equalitySymmetry functionEquality isect_memberEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[A:(T  List)  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[f:\mBbbN{}  {}\mrightarrow{}  T].    (is-path(A;f)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_14-PM-04_09_52
Last ObjectModification: 2015_12_26-PM-07_54_32

Theory : fan-theorem


Home Index