Step
*
2
of Lemma
tree-big-least
1. [T] : Type
2. [A] : (T List) ⟶ ℙ
3. ∃k:ℕ. T ~ ℕk@i
4. Decidable(A)@i
5. ¬(A [])@i
6. n : ℤ@i
7. [%4] : 0 < n@i
8. tree-big(T;upwd-closure(T;A);n - 1)
⇒ (∃k:ℕn - 1. ((¬tree-big(T;upwd-closure(T;A);k)) ∧ tree-big(T;upwd-closure(T;A);k + 1)))@i
9. tree-big(T;upwd-closure(T;A);n)@i
⊢ ∃k:ℕn. ((¬tree-big(T;upwd-closure(T;A);k)) ∧ tree-big(T;upwd-closure(T;A);k + 1))
BY
{ ( Assert ⌜Dec(tree-big(T;upwd-closure(T;A);n - 1))⌝⋅ THEN Auto) }
1
.....decidable?.....
1. [T] : Type
2. [A] : (T List) ⟶ ℙ
3. ∃k:ℕ. T ~ ℕk@i
4. Decidable(A)@i
5. ¬(A [])@i
6. n : ℤ@i
7. [%4] : 0 < n@i
8. tree-big(T;upwd-closure(T;A);n - 1)
⇒ (∃k:ℕn - 1. ((¬tree-big(T;upwd-closure(T;A);k)) ∧ tree-big(T;upwd-closure(T;A);k + 1)))@i
9. tree-big(T;upwd-closure(T;A);n)@i
⊢ Dec(tree-big(T;upwd-closure(T;A);n - 1))
2
1. [T] : Type
2. [A] : (T List) ⟶ ℙ
3. ∃k:ℕ. T ~ ℕk@i
4. Decidable(A)@i
5. ¬(A [])@i
6. n : ℤ@i
7. [%4] : 0 < n@i
8. tree-big(T;upwd-closure(T;A);n - 1)
⇒ (∃k:ℕn - 1. ((¬tree-big(T;upwd-closure(T;A);k)) ∧ tree-big(T;upwd-closure(T;A);k + 1)))@i
9. tree-big(T;upwd-closure(T;A);n)@i
10. Dec(tree-big(T;upwd-closure(T;A);n - 1))
⊢ ∃k:ℕn. ((¬tree-big(T;upwd-closure(T;A);k)) ∧ tree-big(T;upwd-closure(T;A);k + 1))
Latex:
Latex:
1. [T] : Type
2. [A] : (T List) {}\mrightarrow{} \mBbbP{}
3. \mexists{}k:\mBbbN{}. T \msim{} \mBbbN{}k@i
4. Decidable(A)@i
5. \mneg{}(A [])@i
6. n : \mBbbZ{}@i
7. [\%4] : 0 < n@i
8. tree-big(T;upwd-closure(T;A);n - 1)
{}\mRightarrow{} (\mexists{}k:\mBbbN{}n - 1. ((\mneg{}tree-big(T;upwd-closure(T;A);k)) \mwedge{} tree-big(T;upwd-closure(T;A);k + 1)))@i
9. tree-big(T;upwd-closure(T;A);n)@i
\mvdash{} \mexists{}k:\mBbbN{}n. ((\mneg{}tree-big(T;upwd-closure(T;A);k)) \mwedge{} tree-big(T;upwd-closure(T;A);k + 1))
By
Latex:
( Assert \mkleeneopen{}Dec(tree-big(T;upwd-closure(T;A);n - 1))\mkleeneclose{}\mcdot{} THEN Auto)
Home
Index