Nuprl Lemma : tree-big-least

[T:Type]. ∀[A:(T List) ⟶ ℙ].
  ((∃k:ℕ~ ℕk)
   Decidable(A)
   (A []))
   (∀n:ℕ
        (tree-big(T;upwd-closure(T;A);n)
         (∃k:ℕn. ((¬tree-big(T;upwd-closure(T;A);k)) ∧ tree-big(T;upwd-closure(T;A);k 1))))))


Proof




Definitions occuring in Statement :  tree-big: tree-big(T;A;n) upwd-closure: upwd-closure(T;A) dec-predicate: Decidable(X) equipollent: B nil: [] list: List int_seg: {i..j-} nat: uall: [x:A]. B[x] prop: all: x:A. B[x] exists: x:A. B[x] not: ¬A implies:  Q and: P ∧ Q apply: a function: x:A ⟶ B[x] add: m natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q all: x:A. B[x] member: t ∈ T prop: nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A exists: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top so_lambda: λ2x.t[x] subtype_rel: A ⊆B int_seg: {i..j-} guard: {T} lelt: i ≤ j < k so_apply: x[s] ge: i ≥  tree-big: tree-big(T;A;n) upwd-closure: upwd-closure(T;A) iff: ⇐⇒ Q assert: b ifthenelse: if then else fi  btrue: tt cons: [a b] bfalse: ff dec-predicate: Decidable(X) less_than: a < b cand: c∧ B
Lemmas referenced :  subtract-add-cancel lelt_wf decidable__lt decidable__upwd-closure decidable__tree-big null_cons_lemma product_subtype_list null_nil_lemma list-cases iseg_nil length_of_nil_lemma equipollent_wf list_wf dec-predicate_wf nil_wf nat_wf nat_properties primrec-wf2 less_than_wf set_wf int_term_value_add_lemma itermAdd_wf int_seg_properties int_seg_subtype_nat not_wf int_seg_wf exists_wf int_term_value_subtract_lemma itermSubtract_wf subtract_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le le_wf false_wf upwd-closure_wf tree-big_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut thin lemma_by_obid sqequalHypSubstitution isectElimination cumulativity hypothesisEquality because_Cache hypothesis dependent_set_memberEquality natural_numberEquality sqequalRule independent_pairFormation rename setElimination productElimination dependent_functionElimination unionElimination independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll functionEquality productEquality applyEquality addEquality instantiate introduction universeEquality independent_functionElimination promote_hyp hypothesis_subsumption

Latex:
\mforall{}[T:Type].  \mforall{}[A:(T  List)  {}\mrightarrow{}  \mBbbP{}].
    ((\mexists{}k:\mBbbN{}.  T  \msim{}  \mBbbN{}k)
    {}\mRightarrow{}  Decidable(A)
    {}\mRightarrow{}  (\mneg{}(A  []))
    {}\mRightarrow{}  (\mforall{}n:\mBbbN{}
                (tree-big(T;upwd-closure(T;A);n)
                {}\mRightarrow{}  (\mexists{}k:\mBbbN{}n.  ((\mneg{}tree-big(T;upwd-closure(T;A);k))  \mwedge{}  tree-big(T;upwd-closure(T;A);k  +  1))))))



Date html generated: 2016_05_14-PM-04_10_14
Last ObjectModification: 2016_01_14-PM-10_58_13

Theory : fan-theorem


Home Index