Nuprl Lemma : tree-big-least
∀[T:Type]. ∀[A:(T List) ⟶ ℙ].
  ((∃k:ℕ. T ~ ℕk)
  
⇒ Decidable(A)
  
⇒ (¬(A []))
  
⇒ (∀n:ℕ
        (tree-big(T;upwd-closure(T;A);n)
        
⇒ (∃k:ℕn. ((¬tree-big(T;upwd-closure(T;A);k)) ∧ tree-big(T;upwd-closure(T;A);k + 1))))))
Proof
Definitions occuring in Statement : 
tree-big: tree-big(T;A;n)
, 
upwd-closure: upwd-closure(T;A)
, 
dec-predicate: Decidable(X)
, 
equipollent: A ~ B
, 
nil: []
, 
list: T List
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
nat: ℕ
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
exists: ∃x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
int_seg: {i..j-}
, 
guard: {T}
, 
lelt: i ≤ j < k
, 
so_apply: x[s]
, 
ge: i ≥ j 
, 
tree-big: tree-big(T;A;n)
, 
upwd-closure: upwd-closure(T;A)
, 
iff: P 
⇐⇒ Q
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
cons: [a / b]
, 
bfalse: ff
, 
dec-predicate: Decidable(X)
, 
less_than: a < b
, 
cand: A c∧ B
Lemmas referenced : 
subtract-add-cancel, 
lelt_wf, 
decidable__lt, 
decidable__upwd-closure, 
decidable__tree-big, 
null_cons_lemma, 
product_subtype_list, 
null_nil_lemma, 
list-cases, 
iseg_nil, 
length_of_nil_lemma, 
equipollent_wf, 
list_wf, 
dec-predicate_wf, 
nil_wf, 
nat_wf, 
nat_properties, 
primrec-wf2, 
less_than_wf, 
set_wf, 
int_term_value_add_lemma, 
itermAdd_wf, 
int_seg_properties, 
int_seg_subtype_nat, 
not_wf, 
int_seg_wf, 
exists_wf, 
int_term_value_subtract_lemma, 
itermSubtract_wf, 
subtract_wf, 
int_formula_prop_wf, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__le, 
le_wf, 
false_wf, 
upwd-closure_wf, 
tree-big_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
thin, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
cumulativity, 
hypothesisEquality, 
because_Cache, 
hypothesis, 
dependent_set_memberEquality, 
natural_numberEquality, 
sqequalRule, 
independent_pairFormation, 
rename, 
setElimination, 
productElimination, 
dependent_functionElimination, 
unionElimination, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
functionEquality, 
productEquality, 
applyEquality, 
addEquality, 
instantiate, 
introduction, 
universeEquality, 
independent_functionElimination, 
promote_hyp, 
hypothesis_subsumption
Latex:
\mforall{}[T:Type].  \mforall{}[A:(T  List)  {}\mrightarrow{}  \mBbbP{}].
    ((\mexists{}k:\mBbbN{}.  T  \msim{}  \mBbbN{}k)
    {}\mRightarrow{}  Decidable(A)
    {}\mRightarrow{}  (\mneg{}(A  []))
    {}\mRightarrow{}  (\mforall{}n:\mBbbN{}
                (tree-big(T;upwd-closure(T;A);n)
                {}\mRightarrow{}  (\mexists{}k:\mBbbN{}n.  ((\mneg{}tree-big(T;upwd-closure(T;A);k))  \mwedge{}  tree-big(T;upwd-closure(T;A);k  +  1))))))
Date html generated:
2016_05_14-PM-04_10_14
Last ObjectModification:
2016_01_14-PM-10_58_13
Theory : fan-theorem
Home
Index