Step
*
of Lemma
tree-big-monotone
∀[T:Type]. ∀[A:(T List) ⟶ ℙ]. ∀a,b:ℕ. ((a ≤ b)
⇒ tree-big(T;upwd-closure(T;A);a)
⇒ tree-big(T;upwd-closure(T;A);b))
BY
{ ((RepUR ``tree-big upwd-closure`` 0 THEN Auto)
THEN (InstHyp [⌜firstn(a;as)⌝] (-3)⋅ THENA (Auto THEN RWO "length_firstn" 0 THEN Auto))
THEN ParallelLast
THEN Auto)⋅ }
1
1. [T] : Type
2. [A] : (T List) ⟶ ℙ
3. a : ℕ@i
4. b : ℕ@i
5. a ≤ b@i
6. ∀as:T List. ((||as|| = a ∈ ℤ)
⇒ (∃bs:T List. (bs ≤ as ∧ (A bs))))@i
7. as : T List@i
8. ||as|| = b ∈ ℤ@i
9. bs : T List
10. bs ≤ firstn(a;as)
11. A bs
⊢ bs ≤ as
Latex:
Latex:
\mforall{}[T:Type]. \mforall{}[A:(T List) {}\mrightarrow{} \mBbbP{}].
\mforall{}a,b:\mBbbN{}. ((a \mleq{} b) {}\mRightarrow{} tree-big(T;upwd-closure(T;A);a) {}\mRightarrow{} tree-big(T;upwd-closure(T;A);b))
By
Latex:
((RepUR ``tree-big upwd-closure`` 0 THEN Auto)
THEN (InstHyp [\mkleeneopen{}firstn(a;as)\mkleeneclose{}] (-3)\mcdot{} THENA (Auto THEN RWO "length\_firstn" 0 THEN Auto))
THEN ParallelLast
THEN Auto)\mcdot{}
Home
Index