Nuprl Lemma : tree-big-monotone
∀[T:Type]. ∀[A:(T List) ⟶ ℙ].  ∀a,b:ℕ.  ((a ≤ b) 
⇒ tree-big(T;upwd-closure(T;A);a) 
⇒ tree-big(T;upwd-closure(T;A);b))
Proof
Definitions occuring in Statement : 
tree-big: tree-big(T;A;n)
, 
upwd-closure: upwd-closure(T;A)
, 
list: T List
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
upwd-closure: upwd-closure(T;A)
, 
tree-big: tree-big(T;A;n)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
nat: ℕ
, 
int_iseg: {i...j}
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
top: Top
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
le: A ≤ B
Lemmas referenced : 
iseg_transitivity, 
lelt_wf, 
int_term_value_add_lemma, 
int_formula_prop_less_lemma, 
itermAdd_wf, 
intformless_wf, 
decidable__lt, 
firstn_is_iseg, 
nat_wf, 
exists_wf, 
all_wf, 
list_wf, 
equal_wf, 
iseg_wf, 
length_wf, 
le_wf, 
and_wf, 
int_formula_prop_eq_lemma, 
intformeq_wf, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__le, 
nat_properties, 
length_firstn, 
firstn_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
lambdaFormation, 
cut, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
lemma_by_obid, 
isectElimination, 
hypothesisEquality, 
setElimination, 
rename, 
independent_functionElimination, 
because_Cache, 
dependent_set_memberEquality, 
natural_numberEquality, 
unionElimination, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
productEquality, 
applyEquality, 
universeEquality, 
functionEquality, 
cumulativity, 
addEquality
Latex:
\mforall{}[T:Type].  \mforall{}[A:(T  List)  {}\mrightarrow{}  \mBbbP{}].
    \mforall{}a,b:\mBbbN{}.    ((a  \mleq{}  b)  {}\mRightarrow{}  tree-big(T;upwd-closure(T;A);a)  {}\mRightarrow{}  tree-big(T;upwd-closure(T;A);b))
Date html generated:
2016_05_14-PM-04_10_11
Last ObjectModification:
2016_01_14-PM-10_58_11
Theory : fan-theorem
Home
Index