Nuprl Lemma : tree-big-monotone

[T:Type]. ∀[A:(T List) ⟶ ℙ].  ∀a,b:ℕ.  ((a ≤ b)  tree-big(T;upwd-closure(T;A);a)  tree-big(T;upwd-closure(T;A);b))


Proof




Definitions occuring in Statement :  tree-big: tree-big(T;A;n) upwd-closure: upwd-closure(T;A) list: List nat: uall: [x:A]. B[x] prop: le: A ≤ B all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  upwd-closure: upwd-closure(T;A) tree-big: tree-big(T;A;n) uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T nat: int_iseg: {i...j} and: P ∧ Q cand: c∧ B ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top prop: subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] iff: ⇐⇒ Q rev_implies:  Q int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B
Lemmas referenced :  iseg_transitivity lelt_wf int_term_value_add_lemma int_formula_prop_less_lemma itermAdd_wf intformless_wf decidable__lt firstn_is_iseg nat_wf exists_wf all_wf list_wf equal_wf iseg_wf length_wf le_wf and_wf int_formula_prop_eq_lemma intformeq_wf int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le nat_properties length_firstn firstn_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation cut hypothesis sqequalHypSubstitution dependent_functionElimination thin lemma_by_obid isectElimination hypothesisEquality setElimination rename independent_functionElimination because_Cache dependent_set_memberEquality natural_numberEquality unionElimination independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll equalityTransitivity equalitySymmetry productElimination productEquality applyEquality universeEquality functionEquality cumulativity addEquality

Latex:
\mforall{}[T:Type].  \mforall{}[A:(T  List)  {}\mrightarrow{}  \mBbbP{}].
    \mforall{}a,b:\mBbbN{}.    ((a  \mleq{}  b)  {}\mRightarrow{}  tree-big(T;upwd-closure(T;A);a)  {}\mRightarrow{}  tree-big(T;upwd-closure(T;A);b))



Date html generated: 2016_05_14-PM-04_10_11
Last ObjectModification: 2016_01_14-PM-10_58_11

Theory : fan-theorem


Home Index