Nuprl Lemma : firstn_is_iseg

[T:Type]. ∀L1,L2:T List.  (L1 ≤ L2 ⇐⇒ ∃n:ℕ||L2|| 1. (L1 firstn(n;L2) ∈ (T List)))


Proof




Definitions occuring in Statement :  iseg: l1 ≤ l2 firstn: firstn(n;as) length: ||as|| list: List int_seg: {i..j-} uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q add: m natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  iseg: l1 ≤ l2 uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q exists: x:A. B[x] member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s] rev_implies:  Q int_seg: {i..j-} lelt: i ≤ j < k ge: i ≥  decidable: Dec(P) or: P ∨ Q false: False le: A ≤ B uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top subtype_rel: A ⊆B less_than': less_than'(a;b) guard: {T} append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] uiff: uiff(P;Q) int_iseg: {i...j} cand: c∧ B firstn: firstn(n;as) bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff less_than: a < b squash: T sq_type: SQType(T) true: True
Lemmas referenced :  exists_wf list_wf equal_wf append_wf int_seg_wf length_wf firstn_wf non_neg_length decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf itermAdd_wf int_formula_prop_less_lemma int_term_value_add_lemma lelt_wf int_seg_subtype false_wf length_append subtype_rel_list top_wf length-append int_seg_properties list_induction length_of_nil_lemma list_ind_nil_lemma length_of_cons_lemma list_ind_cons_lemma length_zero length_firstn_eq le_wf lt_int_wf bool_wf equal-wf-T-base assert_wf less_than_wf le_int_wf bnot_wf uiff_transitivity eqtt_to_assert assert_of_lt_int eqff_to_assert assert_functionality_wrt_uiff bnot_of_lt_int assert_of_le_int subtype_base_sq int_subtype_base decidable__equal_int add-is-int-iff intformeq_wf itermSubtract_wf int_formula_prop_eq_lemma int_term_value_subtract_lemma cons_wf squash_wf true_wf nth_tl_wf append_firstn_lastn subtype_rel_sets
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep Error :isect_memberFormation_alt,  lambdaFormation independent_pairFormation sqequalHypSubstitution productElimination thin cut introduction extract_by_obid isectElimination hypothesisEquality hypothesis lambdaEquality natural_numberEquality addEquality setElimination rename Error :universeIsType,  universeEquality dependent_pairFormation dependent_set_memberEquality dependent_functionElimination because_Cache unionElimination independent_isectElimination approximateComputation independent_functionElimination int_eqEquality intEquality isect_memberEquality voidElimination voidEquality applyEquality equalityTransitivity equalitySymmetry applyLambdaEquality cumulativity hyp_replacement productEquality baseClosed equalityElimination instantiate pointwiseFunctionality promote_hyp imageElimination baseApply closedConclusion imageMemberEquality setEquality

Latex:
\mforall{}[T:Type].  \mforall{}L1,L2:T  List.    (L1  \mleq{}  L2  \mLeftarrow{}{}\mRightarrow{}  \mexists{}n:\mBbbN{}||L2||  +  1.  (L1  =  firstn(n;L2)))



Date html generated: 2019_06_20-PM-01_28_19
Last ObjectModification: 2018_09_26-PM-05_39_29

Theory : list_1


Home Index