Nuprl Lemma : length_zero
∀[T:Type]. ∀[l:T List].  uiff(||l|| = 0 ∈ ℤ;l = [] ∈ (T List))
Proof
Definitions occuring in Statement : 
length: ||as||, 
nil: [], 
list: T List, 
uiff: uiff(P;Q), 
uall: ∀[x:A]. B[x], 
natural_number: $n, 
int: ℤ, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
or: P ∨ Q, 
cons: [a / b], 
top: Top, 
prop: ℙ, 
squash: ↓T, 
true: True, 
subtype_rel: A ⊆r B, 
guard: {T}, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q, 
ge: i ≥ j , 
decidable: Dec(P), 
false: False, 
le: A ≤ B, 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x]
Lemmas referenced : 
list-cases, 
length_of_nil_lemma, 
nil_wf, 
product_subtype_list, 
length_of_cons_lemma, 
equal-wf-T-base, 
length_wf, 
equal_wf, 
squash_wf, 
true_wf, 
length_of_null_list, 
subtype_rel_self, 
iff_weakening_equal, 
list_wf, 
le_weakening2, 
non_neg_length, 
decidable__lt, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformeq_wf, 
itermAdd_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_add_lemma, 
int_formula_prop_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
independent_pairFormation, 
hypothesisEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
dependent_functionElimination, 
unionElimination, 
sqequalRule, 
promote_hyp, 
hypothesis_subsumption, 
productElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
Error :universeIsType, 
intEquality, 
baseClosed, 
applyEquality, 
lambdaEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
because_Cache, 
independent_isectElimination, 
natural_numberEquality, 
imageMemberEquality, 
instantiate, 
independent_functionElimination, 
independent_pairEquality, 
axiomEquality, 
approximateComputation, 
dependent_pairFormation, 
int_eqEquality
Latex:
\mforall{}[T:Type].  \mforall{}[l:T  List].    uiff(||l||  =  0;l  =  [])
Date html generated:
2019_06_20-PM-01_20_09
Last ObjectModification:
2018_09_26-PM-05_20_46
Theory : list_1
Home
Index