Nuprl Lemma : length_zero

[T:Type]. ∀[l:T List].  uiff(||l|| 0 ∈ ℤ;l [] ∈ (T List))


Proof




Definitions occuring in Statement :  length: ||as|| nil: [] list: List uiff: uiff(P;Q) uall: [x:A]. B[x] natural_number: $n int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a all: x:A. B[x] or: P ∨ Q cons: [a b] top: Top prop: squash: T true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q ge: i ≥  decidable: Dec(P) false: False le: A ≤ B not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x]
Lemmas referenced :  list-cases length_of_nil_lemma nil_wf product_subtype_list length_of_cons_lemma equal-wf-T-base length_wf equal_wf squash_wf true_wf length_of_null_list subtype_rel_self iff_weakening_equal list_wf le_weakening2 non_neg_length decidable__lt full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformeq_wf itermAdd_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_term_value_add_lemma int_formula_prop_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut independent_pairFormation hypothesisEquality extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis dependent_functionElimination unionElimination sqequalRule promote_hyp hypothesis_subsumption productElimination isect_memberEquality voidElimination voidEquality Error :universeIsType,  intEquality baseClosed applyEquality lambdaEquality imageElimination equalityTransitivity equalitySymmetry universeEquality because_Cache independent_isectElimination natural_numberEquality imageMemberEquality instantiate independent_functionElimination independent_pairEquality axiomEquality approximateComputation dependent_pairFormation int_eqEquality

Latex:
\mforall{}[T:Type].  \mforall{}[l:T  List].    uiff(||l||  =  0;l  =  [])



Date html generated: 2019_06_20-PM-01_20_09
Last ObjectModification: 2018_09_26-PM-05_20_46

Theory : list_1


Home Index