Nuprl Lemma : unsquashed-WCP_wf

unsquashed-WCP ∈ ℙ


Proof




Definitions occuring in Statement :  unsquashed-WCP: unsquashed-WCP prop: member: t ∈ T
Definitions unfolded in proof :  unsquashed-WCP: unsquashed-WCP member: t ∈ T uall: [x:A]. B[x] so_lambda: λ2x.t[x] implies:  Q prop: subtype_rel: A ⊆B uimplies: supposing a le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A so_apply: x[s] all: x:A. B[x]
Lemmas referenced :  all_wf nat_wf exists_wf int_seg_wf equal_wf int_seg_subtype_nat false_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin functionEquality hypothesis lambdaEquality because_Cache natural_numberEquality applyEquality functionExtensionality hypothesisEquality independent_isectElimination independent_pairFormation lambdaFormation

Latex:
unsquashed-WCP  \mmember{}  \mBbbP{}



Date html generated: 2017_04_17-AM-09_40_51
Last ObjectModification: 2017_02_27-PM-05_35_48

Theory : fan-theorem


Home Index