Nuprl Lemma : unsquashed-WCP_wf
unsquashed-WCP ∈ ℙ
Proof
Definitions occuring in Statement : 
unsquashed-WCP: unsquashed-WCP
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
unsquashed-WCP: unsquashed-WCP
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
Lemmas referenced : 
all_wf, 
nat_wf, 
exists_wf, 
int_seg_wf, 
equal_wf, 
int_seg_subtype_nat, 
false_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
functionEquality, 
hypothesis, 
lambdaEquality, 
because_Cache, 
natural_numberEquality, 
applyEquality, 
functionExtensionality, 
hypothesisEquality, 
independent_isectElimination, 
independent_pairFormation, 
lambdaFormation
Latex:
unsquashed-WCP  \mmember{}  \mBbbP{}
Date html generated:
2017_04_17-AM-09_40_51
Last ObjectModification:
2017_02_27-PM-05_35_48
Theory : fan-theorem
Home
Index