Nuprl Lemma : empty-fset-closed
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[fs:(T ⟶ T) List].  ({} closed under fs)
Proof
Definitions occuring in Statement : 
fset-closed: (s closed under fs), 
empty-fset: {}, 
list: T List, 
deq: EqDecider(T), 
uall: ∀[x:A]. B[x], 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
fset-closed: (s closed under fs), 
all: ∀x:A. B[x], 
member: t ∈ T, 
top: Top, 
uall: ∀[x:A]. B[x], 
so_lambda: λ2x.t[x], 
uimplies: b supposing a, 
prop: ℙ, 
so_apply: x[s], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q, 
false: False, 
l_all: (∀x∈L.P[x])
Lemmas referenced : 
mem_empty_lemma, 
l_all_iff, 
all_wf, 
isect_wf, 
false_wf, 
l_member_wf, 
int_seg_wf, 
length_wf, 
list_wf, 
deq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
isect_memberFormation, 
introduction, 
isectElimination, 
functionEquality, 
hypothesisEquality, 
lambdaEquality, 
setEquality, 
productElimination, 
independent_functionElimination, 
lambdaFormation, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
natural_numberEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[fs:(T  {}\mrightarrow{}  T)  List].    (\{\}  closed  under  fs)
Date html generated:
2016_05_14-PM-03_44_45
Last ObjectModification:
2015_12_26-PM-06_38_09
Theory : finite!sets
Home
Index