Nuprl Lemma : compose-surjections

[A,B,C:Type]. ∀[f:A ⟶ B]. ∀[g:B ⟶ C].  (Surj(A;B;f)  Surj(B;C;g)  Surj(A;C;g f))


Proof




Definitions occuring in Statement :  surject: Surj(A;B;f) compose: g uall: [x:A]. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  and: P ∧ Q compose: g prop: exists: x:A. B[x] member: t ∈ T all: x:A. B[x] surject: Surj(A;B;f) implies:  Q uall: [x:A]. B[x]
Lemmas referenced :  equal_wf istype-universe surject_wf compose_wf
Rules used in proof :  rename setElimination applyLambdaEquality productIsType independent_pairFormation dependent_set_memberEquality_alt sqequalRule hyp_replacement universeEquality instantiate functionIsType universeIsType isectElimination extract_by_obid introduction cut applyEquality equalitySymmetry hypothesis equalityTransitivity inhabitedIsType equalityIstype dependent_pairFormation_alt productElimination hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution lambdaFormation_alt isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[A,B,C:Type].  \mforall{}[f:A  {}\mrightarrow{}  B].  \mforall{}[g:B  {}\mrightarrow{}  C].    (Surj(A;B;f)  {}\mRightarrow{}  Surj(B;C;g)  {}\mRightarrow{}  Surj(A;C;g  o  f))



Date html generated: 2019_10_15-AM-10_20_34
Last ObjectModification: 2019_10_08-PM-00_18_08

Theory : fun_1


Home Index