Nuprl Lemma : compose-surjections
∀[A,B,C:Type]. ∀[f:A ⟶ B]. ∀[g:B ⟶ C].  (Surj(A;B;f) 
⇒ Surj(B;C;g) 
⇒ Surj(A;C;g o f))
Proof
Definitions occuring in Statement : 
surject: Surj(A;B;f)
, 
compose: f o g
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
and: P ∧ Q
, 
compose: f o g
, 
prop: ℙ
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
surject: Surj(A;B;f)
, 
implies: P 
⇒ Q
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
equal_wf, 
istype-universe, 
surject_wf, 
compose_wf
Rules used in proof : 
rename, 
setElimination, 
applyLambdaEquality, 
productIsType, 
independent_pairFormation, 
dependent_set_memberEquality_alt, 
sqequalRule, 
hyp_replacement, 
universeEquality, 
instantiate, 
functionIsType, 
universeIsType, 
isectElimination, 
extract_by_obid, 
introduction, 
cut, 
applyEquality, 
equalitySymmetry, 
hypothesis, 
equalityTransitivity, 
inhabitedIsType, 
equalityIstype, 
dependent_pairFormation_alt, 
productElimination, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
lambdaFormation_alt, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[A,B,C:Type].  \mforall{}[f:A  {}\mrightarrow{}  B].  \mforall{}[g:B  {}\mrightarrow{}  C].    (Surj(A;B;f)  {}\mRightarrow{}  Surj(B;C;g)  {}\mRightarrow{}  Surj(A;C;g  o  f))
Date html generated:
2019_10_15-AM-10_20_34
Last ObjectModification:
2019_10_08-PM-00_18_08
Theory : fun_1
Home
Index