Nuprl Lemma : fun_exp_add1_sub

[T:Type]. ∀[f:T ⟶ T]. ∀[x:T]. ∀[n:ℕ+].  ((f (f^n x)) (f^n x) ∈ T)


Proof




Definitions occuring in Statement :  fun_exp: f^n nat_plus: + uall: [x:A]. B[x] apply: a function: x:A ⟶ B[x] subtract: m natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T top: Top nat: nat_plus: + all: x:A. B[x] decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q and: P ∧ Q not: ¬A rev_implies:  Q implies:  Q false: False prop: uiff: uiff(P;Q) uimplies: supposing a subtract: m subtype_rel: A ⊆B le: A ≤ B less_than': less_than'(a;b) true: True squash: T
Lemmas referenced :  nat_plus_wf fun_exp_wf le_wf le-add-cancel add-zero add_functionality_wrt_le add-commutes add-swap add-associates minus-minus minus-add minus-one-mul-top zero-add minus-one-mul condition-implies-le less-iff-le not-le-2 false_wf decidable__le subtract_wf fun_exp_add1
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin isect_memberEquality voidElimination voidEquality dependent_set_memberEquality setElimination rename hypothesisEquality natural_numberEquality hypothesis dependent_functionElimination unionElimination independent_pairFormation lambdaFormation productElimination independent_functionElimination independent_isectElimination addEquality applyEquality lambdaEquality intEquality minusEquality because_Cache imageElimination imageMemberEquality baseClosed axiomEquality functionEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[f:T  {}\mrightarrow{}  T].  \mforall{}[x:T].  \mforall{}[n:\mBbbN{}\msupplus{}].    ((f  (f\^{}n  -  1  x))  =  (f\^{}n  x))



Date html generated: 2016_05_13-PM-04_06_56
Last ObjectModification: 2016_01_14-PM-07_46_13

Theory : fun_1


Home Index