Nuprl Lemma : fun_with_inv_is_bij
∀[A,B:Type].  ∀f:A ⟶ B. ∀g:B ⟶ A.  Bij(A;B;f) supposing InvFuns(A;B;f;g)
Proof
Definitions occuring in Statement : 
biject: Bij(A;B;f)
, 
inv_funs: InvFuns(A;B;f;g)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
prop: ℙ
, 
and: P ∧ Q
, 
inv_funs: InvFuns(A;B;f;g)
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
inject: Inj(A;B;f)
, 
surject: Surj(A;B;f)
, 
biject: Bij(A;B;f)
, 
compose: f o g
, 
tidentity: Id{T}
, 
identity: Id
, 
exists: ∃x:A. B[x]
Lemmas referenced : 
inv_funs_wf, 
equal_wf, 
and_wf
Rules used in proof : 
universeEquality, 
Error :inhabitedIsType, 
Error :functionIsType, 
hypothesisEquality, 
isectElimination, 
extract_by_obid, 
Error :universeIsType, 
rename, 
hypothesis, 
axiomEquality, 
independent_pairEquality, 
thin, 
productElimination, 
sqequalHypSubstitution, 
sqequalRule, 
introduction, 
cut, 
Error :lambdaFormation_alt, 
Error :isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
applyEquality, 
Error :equalityIsType1, 
independent_pairFormation, 
setElimination, 
applyLambdaEquality, 
equalityTransitivity, 
dependent_set_memberEquality, 
equalitySymmetry, 
hyp_replacement, 
Error :dependent_pairFormation_alt
Latex:
\mforall{}[A,B:Type].    \mforall{}f:A  {}\mrightarrow{}  B.  \mforall{}g:B  {}\mrightarrow{}  A.    Bij(A;B;f)  supposing  InvFuns(A;B;f;g)
Date html generated:
2019_06_20-PM-00_26_35
Last ObjectModification:
2018_10_15-PM-00_56_14
Theory : fun_1
Home
Index