Nuprl Lemma : fun_with_inv_is_bij

[A,B:Type].  ∀f:A ⟶ B. ∀g:B ⟶ A.  Bij(A;B;f) supposing InvFuns(A;B;f;g)


Proof




Definitions occuring in Statement :  biject: Bij(A;B;f) inv_funs: InvFuns(A;B;f;g) uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  prop: and: P ∧ Q inv_funs: InvFuns(A;B;f;g) member: t ∈ T uimplies: supposing a all: x:A. B[x] uall: [x:A]. B[x] implies:  Q inject: Inj(A;B;f) surject: Surj(A;B;f) biject: Bij(A;B;f) compose: g tidentity: Id{T} identity: Id exists: x:A. B[x]
Lemmas referenced :  inv_funs_wf equal_wf and_wf
Rules used in proof :  universeEquality Error :inhabitedIsType,  Error :functionIsType,  hypothesisEquality isectElimination extract_by_obid Error :universeIsType,  rename hypothesis axiomEquality independent_pairEquality thin productElimination sqequalHypSubstitution sqequalRule introduction cut Error :lambdaFormation_alt,  Error :isect_memberFormation_alt,  sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution applyEquality Error :equalityIsType1,  independent_pairFormation setElimination applyLambdaEquality equalityTransitivity dependent_set_memberEquality equalitySymmetry hyp_replacement Error :dependent_pairFormation_alt

Latex:
\mforall{}[A,B:Type].    \mforall{}f:A  {}\mrightarrow{}  B.  \mforall{}g:B  {}\mrightarrow{}  A.    Bij(A;B;f)  supposing  InvFuns(A;B;f;g)



Date html generated: 2019_06_20-PM-00_26_35
Last ObjectModification: 2018_10_15-PM-00_56_14

Theory : fun_1


Home Index