Nuprl Lemma : has-valueall-apply
∀[a,g:Base].  has-valueall(g) supposing has-valueall(g a)
Proof
Definitions occuring in Statement : 
has-valueall: has-valueall(a)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
apply: f a
, 
base: Base
Definitions unfolded in proof : 
prop: ℙ
, 
has-value: (a)↓
, 
has-valueall: has-valueall(a)
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
evalall: evalall(t)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
top: Top
, 
not: ¬A
, 
false: False
, 
outl: outl(x)
, 
outr: outr(x)
Lemmas referenced : 
bottom_diverge, 
has-value-implies-dec-ispair, 
bottom-sqle, 
has-value-implies-dec-isinl, 
has-value-implies-dec-isinr, 
has-valueall-has-value, 
has-valueall_wf_base, 
base_wf
Rules used in proof : 
equalitySymmetry, 
equalityTransitivity, 
because_Cache, 
isect_memberEquality, 
axiomSqleEquality, 
callbyvalueApply, 
hypothesis, 
independent_isectElimination, 
hypothesisEquality, 
baseClosed, 
closedConclusion, 
baseApply, 
sqequalRule, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
lemma_by_obid, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
extract_by_obid, 
callbyvalueReduce, 
dependent_functionElimination, 
independent_functionElimination, 
unionElimination, 
sqequalSqle, 
applyPair, 
voidElimination, 
voidEquality, 
applyInl, 
applyInr
Latex:
\mforall{}[a,g:Base].    has-valueall(g)  supposing  has-valueall(g  a)
Date html generated:
2019_06_20-PM-00_26_52
Last ObjectModification:
2018_08_16-AM-11_10_30
Theory : fun_1
Home
Index