Nuprl Lemma : sq_stable__inverse

[T:Type]. ∀[op:T ⟶ T ⟶ T]. ∀[id:T]. ∀[inv:T ⟶ T].  SqStable(Inverse(T;op;id;inv))


Proof




Definitions occuring in Statement :  inverse: Inverse(T;op;id;inv) sq_stable: SqStable(P) uall: [x:A]. B[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  inverse: Inverse(T;op;id;inv) uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] infix_ap: y so_apply: x[s] implies:  Q prop: sq_stable: SqStable(P) and: P ∧ Q
Lemmas referenced :  sq_stable__uall and_wf equal_wf sq_stable__and sq_stable__equal squash_wf uall_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality applyEquality hypothesis independent_functionElimination isect_memberEquality because_Cache lambdaFormation dependent_functionElimination productElimination independent_pairEquality axiomEquality functionEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[op:T  {}\mrightarrow{}  T  {}\mrightarrow{}  T].  \mforall{}[id:T].  \mforall{}[inv:T  {}\mrightarrow{}  T].    SqStable(Inverse(T;op;id;inv))



Date html generated: 2016_05_13-PM-04_09_00
Last ObjectModification: 2015_12_26-AM-11_03_13

Theory : fun_1


Home Index