Nuprl Lemma : complete_nat_ind_with_y
∀[P:ℕ ⟶ ℙ{k}]. ((∀i:ℕ. ((∀j:ℕi. P[j]) 
⇒ P[i])) 
⇒ (∀i:ℕ. P[i]))
Proof
Definitions occuring in Statement : 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
nat: ℕ
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
guard: {T}
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
Lemmas referenced : 
complete_nat_measure_ind, 
nat_wf, 
int_seg_wf, 
all_wf, 
less_than_wf, 
int_seg_subtype_nat, 
false_wf, 
subtype_rel_sets, 
le_wf, 
lelt_wf
Rules used in proof : 
cut, 
instantiate, 
lemma_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
thin, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
hypothesisEquality, 
isect_memberFormation, 
lambdaFormation, 
independent_functionElimination, 
dependent_functionElimination, 
natural_numberEquality, 
setElimination, 
rename, 
cumulativity, 
setEquality, 
applyEquality, 
because_Cache, 
universeEquality, 
functionEquality, 
independent_isectElimination, 
independent_pairFormation, 
intEquality, 
productElimination
Latex:
\mforall{}[P:\mBbbN{}  {}\mrightarrow{}  \mBbbP{}\{k\}].  ((\mforall{}i:\mBbbN{}.  ((\mforall{}j:\mBbbN{}i.  P[j])  {}\mRightarrow{}  P[i]))  {}\mRightarrow{}  (\mforall{}i:\mBbbN{}.  P[i]))
Date html generated:
2016_05_13-PM-04_03_08
Last ObjectModification:
2015_12_26-AM-10_56_14
Theory : int_1
Home
Index