Nuprl Lemma : complete_nat_ind_with_y

[P:ℕ ⟶ ℙ{k}]. ((∀i:ℕ((∀j:ℕi. P[j])  P[i]))  (∀i:ℕP[i]))


Proof




Definitions occuring in Statement :  int_seg: {i..j-} nat: uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] implies:  Q all: x:A. B[x] nat: prop: subtype_rel: A ⊆B uimplies: supposing a le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A guard: {T} int_seg: {i..j-} lelt: i ≤ j < k
Lemmas referenced :  complete_nat_measure_ind nat_wf int_seg_wf all_wf less_than_wf int_seg_subtype_nat false_wf subtype_rel_sets le_wf lelt_wf
Rules used in proof :  cut instantiate lemma_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesis sqequalRule lambdaEquality hypothesisEquality isect_memberFormation lambdaFormation independent_functionElimination dependent_functionElimination natural_numberEquality setElimination rename cumulativity setEquality applyEquality because_Cache universeEquality functionEquality independent_isectElimination independent_pairFormation intEquality productElimination

Latex:
\mforall{}[P:\mBbbN{}  {}\mrightarrow{}  \mBbbP{}\{k\}].  ((\mforall{}i:\mBbbN{}.  ((\mforall{}j:\mBbbN{}i.  P[j])  {}\mRightarrow{}  P[i]))  {}\mRightarrow{}  (\mforall{}i:\mBbbN{}.  P[i]))



Date html generated: 2016_05_13-PM-04_03_08
Last ObjectModification: 2015_12_26-AM-10_56_14

Theory : int_1


Home Index