Nuprl Lemma : complete_nat_measure_ind

[T:Type]. ∀[measure:T ⟶ ℕ]. ∀[P:T ⟶ ℙ].
  ((∀i:T. ((∀j:{j:T| measure[j] < measure[i]} P[j])  P[i]))  (∀i:T. P[i]))


Proof




Definitions occuring in Statement :  nat: less_than: a < b uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] implies:  Q set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q so_lambda: λ2x.t[x] prop: so_apply: x[s] subtype_rel: A ⊆B all: x:A. B[x] genrec: genrec nat: false: False ge: i ≥  guard: {T} uimplies: supposing a decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q and: P ∧ Q not: ¬A rev_implies:  Q uiff: uiff(P;Q) subtract: m top: Top le: A ≤ B less_than': less_than'(a;b) true: True exists: x:A. B[x] sq_type: SQType(T)
Lemmas referenced :  all_wf less_than_wf nat_wf nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf le_wf decidable__le subtract_wf false_wf not-ge-2 less-iff-le condition-implies-le minus-one-mul zero-add minus-one-mul-top minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel subtype_rel-equal base_wf equal_wf subtype_base_sq int_subtype_base not-le-2 le_reflexive
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction lambdaEquality cut extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality sqequalRule functionEquality setEquality because_Cache applyEquality functionExtensionality hypothesis lambdaFormation setElimination rename universeEquality intWeakElimination natural_numberEquality independent_isectElimination independent_functionElimination voidElimination dependent_functionElimination axiomEquality unionElimination independent_pairFormation productElimination addEquality isect_memberEquality voidEquality intEquality minusEquality equalityTransitivity equalitySymmetry dependent_pairFormation sqequalIntensionalEquality promote_hyp applyLambdaEquality instantiate

Latex:
\mforall{}[T:Type].  \mforall{}[measure:T  {}\mrightarrow{}  \mBbbN{}].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}i:T.  ((\mforall{}j:\{j:T|  measure[j]  <  measure[i]\}  .  P[j])  {}\mRightarrow{}  P[i]))  {}\mRightarrow{}  (\mforall{}i:T.  P[i]))



Date html generated: 2017_04_14-AM-07_32_42
Last ObjectModification: 2017_02_27-PM-03_07_25

Theory : int_1


Home Index