Nuprl Lemma : absval_squared
∀[x:ℤ]. ((|x| * |x|) = (x * x) ∈ ℤ)
Proof
Definitions occuring in Statement : 
absval: |i|
, 
uall: ∀[x:A]. B[x]
, 
multiply: n * m
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
true: True
, 
squash: ↓T
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
Lemmas referenced : 
equal_wf, 
absval_mul, 
absval_square, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
hypothesis, 
intEquality, 
because_Cache, 
hypothesisEquality, 
multiplyEquality, 
natural_numberEquality, 
applyEquality, 
thin, 
lambdaEquality, 
sqequalHypSubstitution, 
imageElimination, 
introduction, 
extract_by_obid, 
isectElimination, 
equalitySymmetry, 
equalityTransitivity, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
productElimination, 
independent_functionElimination
Latex:
\mforall{}[x:\mBbbZ{}].  ((|x|  *  |x|)  =  (x  *  x))
Date html generated:
2017_04_14-AM-09_15_38
Last ObjectModification:
2017_02_27-PM-03_53_05
Theory : int_2
Home
Index