Nuprl Lemma : absval_squared

[x:ℤ]. ((|x| |x|) (x x) ∈ ℤ)


Proof




Definitions occuring in Statement :  absval: |i| uall: [x:A]. B[x] multiply: m int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T true: True squash: T subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q
Lemmas referenced :  equal_wf absval_mul absval_square iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut hypothesis intEquality because_Cache hypothesisEquality multiplyEquality natural_numberEquality applyEquality thin lambdaEquality sqequalHypSubstitution imageElimination introduction extract_by_obid isectElimination equalitySymmetry equalityTransitivity sqequalRule imageMemberEquality baseClosed independent_isectElimination productElimination independent_functionElimination

Latex:
\mforall{}[x:\mBbbZ{}].  ((|x|  *  |x|)  =  (x  *  x))



Date html generated: 2017_04_14-AM-09_15_38
Last ObjectModification: 2017_02_27-PM-03_53_05

Theory : int_2


Home Index