Nuprl Lemma : absval_square

[x:ℤ]. (|x x| (x x) ∈ ℤ)


Proof




Definitions occuring in Statement :  absval: |i| uall: [x:A]. B[x] multiply: m int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a less_than: a < b less_than': less_than'(a;b) top: Top true: True squash: T not: ¬A false: False prop: bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb ifthenelse: if then else fi  assert: b satisfiable_int_formula: satisfiable_int_formula(fmla)
Lemmas referenced :  square_non_neg absval_unfold lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int top_wf less_than_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermMultiply_wf itermVar_wf intformnot_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_mul_lemma int_term_value_var_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_formula_prop_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality sqequalRule isectElimination multiplyEquality minusEquality natural_numberEquality lambdaFormation unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination because_Cache lessCases sqequalAxiom isect_memberEquality independent_pairFormation voidElimination voidEquality imageMemberEquality baseClosed imageElimination independent_functionElimination dependent_pairFormation promote_hyp instantiate cumulativity lambdaEquality int_eqEquality intEquality computeAll

Latex:
\mforall{}[x:\mBbbZ{}].  (|x  *  x|  =  (x  *  x))



Date html generated: 2017_04_14-AM-09_15_35
Last ObjectModification: 2017_02_27-PM-03_53_07

Theory : int_2


Home Index