Nuprl Lemma : square_non_neg

x:ℤ(0 ≤ (x x))


Proof




Definitions occuring in Statement :  le: A ≤ B all: x:A. B[x] multiply: m natural_number: $n int:
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B nat: uimplies: supposing a prop: squash: T decidable: Dec(P) or: P ∨ Q false: False le: A ≤ B and: P ∧ Q uiff: uiff(P;Q) satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] implies:  Q not: ¬A top: Top true: True bool: 𝔹 unit: Unit it: btrue: tt less_than: a < b less_than': less_than'(a;b) bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb ifthenelse: if then else fi  assert: b
Lemmas referenced :  mul_preserves_le absval_wf nat_wf absval-non-neg le_wf squash_wf true_wf decidable__equal_int multiply-is-int-iff satisfiable-full-omega-tt intformnot_wf intformeq_wf itermConstant_wf itermMultiply_wf itermVar_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_constant_lemma int_term_value_mul_lemma int_term_value_var_lemma int_formula_prop_wf false_wf lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int top_wf less_than_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot itermMinus_wf int_term_value_minus_lemma absval_unfold
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality hypothesisEquality hypothesis applyEquality lambdaEquality setElimination rename sqequalRule independent_isectElimination because_Cache hyp_replacement equalitySymmetry imageElimination equalityTransitivity intEquality dependent_functionElimination unionElimination pointwiseFunctionality promote_hyp productElimination baseApply closedConclusion baseClosed dependent_pairFormation int_eqEquality isect_memberEquality voidElimination voidEquality computeAll imageMemberEquality minusEquality equalityElimination lessCases isect_memberFormation sqequalAxiom independent_pairFormation independent_functionElimination multiplyEquality instantiate cumulativity

Latex:
\mforall{}x:\mBbbZ{}.  (0  \mleq{}  (x  *  x))



Date html generated: 2017_04_14-AM-09_15_33
Last ObjectModification: 2017_02_27-PM-03_53_21

Theory : int_2


Home Index