Step
*
2
1
of Lemma
biject-int-nat
1. b : ℕ
⊢ if 0 ≤z if (b rem 2 =z 0) then b ÷ 2 else -((b ÷ 2) + 1) fi
then 2 * if (b rem 2 =z 0) then b ÷ 2 else -((b ÷ 2) + 1) fi
else (2 * ((-if (b rem 2 =z 0) then b ÷ 2 else -((b ÷ 2) + 1) fi ) - 1)) + 1
fi
= b
∈ ℕ
BY
{ ((InstLemma `div_rem_sum` [⌜b⌝;⌜2⌝]⋅ THEN Auto) THEN InstLemma `rem_bounds_1` [⌜b⌝;⌜2⌝]⋅ THEN Auto) }
Latex:
Latex:
1. b : \mBbbN{}
\mvdash{} if 0 \mleq{}z if (b rem 2 =\msubz{} 0) then b \mdiv{} 2 else -((b \mdiv{} 2) + 1) fi
then 2 * if (b rem 2 =\msubz{} 0) then b \mdiv{} 2 else -((b \mdiv{} 2) + 1) fi
else (2 * ((-if (b rem 2 =\msubz{} 0) then b \mdiv{} 2 else -((b \mdiv{} 2) + 1) fi ) - 1)) + 1
fi
= b
By
Latex:
((InstLemma `div\_rem\_sum` [\mkleeneopen{}b\mkleeneclose{};\mkleeneopen{}2\mkleeneclose{}]\mcdot{} THEN Auto) THEN InstLemma `rem\_bounds\_1` [\mkleeneopen{}b\mkleeneclose{};\mkleeneopen{}2\mkleeneclose{}]\mcdot{} THEN Auto)
Home
Index