Nuprl Lemma : imin_wf

[a,b:ℤ].  (imin(a;b) ∈ ℤ)


Proof




Definitions occuring in Statement :  imin: imin(a;b) uall: [x:A]. B[x] member: t ∈ T int:
Definitions unfolded in proof :  imin: imin(a;b) uall: [x:A]. B[x] member: t ∈ T has-value: (a)↓ uimplies: supposing a
Lemmas referenced :  value-type-has-value int-value-type ifthenelse_wf le_int_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut callbyvalueReduce lemma_by_obid sqequalHypSubstitution isectElimination thin intEquality independent_isectElimination hypothesis hypothesisEquality because_Cache axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality

Latex:
\mforall{}[a,b:\mBbbZ{}].    (imin(a;b)  \mmember{}  \mBbbZ{})



Date html generated: 2016_05_14-AM-07_21_24
Last ObjectModification: 2015_12_26-PM-01_31_32

Theory : int_2


Home Index