Step
*
of Lemma
int-prod-split
∀[n:ℕ]. ∀[f:ℕn ⟶ ℤ]. ∀[m:ℕn + 1]. (Π(f[x] | x < n) = (Π(f[x] | x < m) * Π(f[x + m] | x < n - m)) ∈ ℤ)
BY
{ ((InductionOnNat⋅ THEN Auto) THEN All Reduce) }
1
1. n : ℤ
2. f : ℕ0 ⟶ ℤ
3. m : ℕ1
⊢ 1 = (Π(f[x] | x < m) * Π(f[x + m] | x < 0 - m)) ∈ ℤ
2
1. n : ℤ
2. 0 < n
3. ∀[f:ℕn - 1 ⟶ ℤ]. ∀[m:ℕ(n - 1) + 1]. (Π(f[x] | x < n - 1) = (Π(f[x] | x < m) * Π(f[x + m] | x < n - 1 - m)) ∈ ℤ)
4. f : ℕn ⟶ ℤ
5. m : ℕn + 1
⊢ Π(f[x] | x < n) = (Π(f[x] | x < m) * Π(f[x + m] | x < n - m)) ∈ ℤ
Latex:
Latex:
\mforall{}[n:\mBbbN{}]. \mforall{}[f:\mBbbN{}n {}\mrightarrow{} \mBbbZ{}]. \mforall{}[m:\mBbbN{}n + 1]. (\mPi{}(f[x] | x < n) = (\mPi{}(f[x] | x < m) * \mPi{}(f[x + m] | x < n - m)))
By
Latex:
((InductionOnNat\mcdot{} THEN Auto) THEN All Reduce)
Home
Index