Nuprl Lemma : int-prod-split

[n:ℕ]. ∀[f:ℕn ⟶ ℤ]. ∀[m:ℕ1].  (f[x] x < n) (f[x] x < m) * Π(f[x m] x < m)) ∈ ℤ)


Proof




Definitions occuring in Statement :  int-prod: Π(f[x] x < k) int_seg: {i..j-} nat: uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] multiply: m subtract: m add: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] all: x:A. B[x] top: Top and: P ∧ Q prop: so_lambda: λ2x.t[x] so_apply: x[s] int_seg: {i..j-} decidable: Dec(P) or: P ∨ Q sq_type: SQType(T) guard: {T} subtract: m lelt: i ≤ j < k int-prod: Π(f[x] x < k) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) bfalse: ff subtype_rel: A ⊆B bnot: ¬bb ifthenelse: if then else fi  assert: b rev_implies:  Q iff: ⇐⇒ Q lt_int: i <j le: A ≤ B less_than': less_than'(a;b) true: True
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf int_prod0_lemma int_seg_wf subtract-1-ge-0 nat_wf decidable__equal_int subtype_base_sq int_subtype_base int_seg_properties int_seg_subtype_special int_seg_cases subtract_wf lt_int_wf eqtt_to_assert assert_of_lt_int eqff_to_assert bool_subtype_base bool_cases_sqequal bool_wf assert-bnot iff_weakening_uiff assert_wf primrec-unroll intformnot_wf intformeq_wf itermSubtract_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_subtract_lemma int-prod_wf decidable__le le_wf decidable__lt one-mul itermAdd_wf int_term_value_add_lemma zero-add primrec_wf itermMultiply_wf int_term_value_mul_lemma set_subtype_base lelt_wf subtype_rel_function int_seg_subtype istype-false not-le-2 condition-implies-le add-associates minus-add minus-one-mul add-swap minus-one-mul-top add-mul-special zero-mul add-zero add-commutes le-add-cancel2 subtype_rel_self subtract-add-cancel int_seg_subtype_nat add-member-int_seg1 mul-associates mul-swap
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination Error :lambdaFormation_alt,  natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  int_eqEquality dependent_functionElimination Error :isect_memberEquality_alt,  voidElimination sqequalRule independent_pairFormation Error :universeIsType,  axiomEquality Error :isectIsTypeImplies,  Error :inhabitedIsType,  Error :functionIsTypeImplies,  addEquality Error :functionIsType,  unionElimination instantiate cumulativity intEquality because_Cache equalityTransitivity equalitySymmetry hypothesis_subsumption productElimination equalityElimination Error :equalityIsType4,  baseApply closedConclusion baseClosed applyEquality promote_hyp Error :equalityIsType1,  multiplyEquality Error :dependent_set_memberEquality_alt,  Error :productIsType,  minusEquality

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[f:\mBbbN{}n  {}\mrightarrow{}  \mBbbZ{}].  \mforall{}[m:\mBbbN{}n  +  1].    (\mPi{}(f[x]  |  x  <  n)  =  (\mPi{}(f[x]  |  x  <  m)  *  \mPi{}(f[x  +  m]  |  x  <  n  -  m)))



Date html generated: 2019_06_20-PM-01_18_37
Last ObjectModification: 2018_10_15-PM-02_14_19

Theory : int_2


Home Index