Step
*
1
1
of Lemma
mu-ge-bound-property
∀d:ℕ. ∀n,m:ℤ.
(((m - n) ≤ d)
⇒ (∀f:{n..m-} ⟶ 𝔹. ((∃m:{n..m-}. (↑(f m)))
⇒ {(↑(f mu-ge(f;n))) ∧ (∀[i:{n..mu-ge(f;n)-}]. (¬↑(f i)))})))
BY
{ TACTIC:InstLemma `mu-ge-bound` [] }
1
1. ∀[n,m:ℤ]. ∀[f:{n..m-} ⟶ 𝔹]. mu-ge(f;n) ∈ {n..m-} supposing ∃k:{n..m-}. (↑(f k))
⊢ ∀d:ℕ. ∀n,m:ℤ.
(((m - n) ≤ d)
⇒ (∀f:{n..m-} ⟶ 𝔹. ((∃m:{n..m-}. (↑(f m)))
⇒ {(↑(f mu-ge(f;n))) ∧ (∀[i:{n..mu-ge(f;n)-}]. (¬↑(f i)))})))
Latex:
Latex:
\mforall{}d:\mBbbN{}. \mforall{}n,m:\mBbbZ{}.
(((m - n) \mleq{} d)
{}\mRightarrow{} (\mforall{}f:\{n..m\msupminus{}\} {}\mrightarrow{} \mBbbB{}
((\mexists{}m:\{n..m\msupminus{}\}. (\muparrow{}(f m))) {}\mRightarrow{} \{(\muparrow{}(f mu-ge(f;n))) \mwedge{} (\mforall{}[i:\{n..mu-ge(f;n)\msupminus{}\}]. (\mneg{}\muparrow{}(f i)))\})))
By
Latex:
TACTIC:InstLemma `mu-ge-bound` []
Home
Index