Step
*
of Lemma
mu-ge_wf2
∀[n:ℤ]. ∀[f:{n...} ⟶ (Top + Top)]. mu-ge(f;n) ∈ {n...} supposing ∃m:{n...}. (↑isl(f m))
BY
{ ((UnivCD THENA Auto) THEN ExRepD THEN Assert ⌜∀d:ℕ. ((n ≤ (m - d))
⇒ (mu-ge(f;m - d) ∈ {n...}))⌝⋅) }
1
.....assertion.....
1. n : ℤ
2. f : {n...} ⟶ (Top + Top)
3. m : {n...}
4. ↑isl(f m)
⊢ ∀d:ℕ. ((n ≤ (m - d))
⇒ (mu-ge(f;m - d) ∈ {n...}))
2
1. n : ℤ
2. f : {n...} ⟶ (Top + Top)
3. m : {n...}
4. ↑isl(f m)
5. ∀d:ℕ. ((n ≤ (m - d))
⇒ (mu-ge(f;m - d) ∈ {n...}))
⊢ mu-ge(f;n) ∈ {n...}
Latex:
Latex:
\mforall{}[n:\mBbbZ{}]. \mforall{}[f:\{n...\} {}\mrightarrow{} (Top + Top)]. mu-ge(f;n) \mmember{} \{n...\} supposing \mexists{}m:\{n...\}. (\muparrow{}isl(f m))
By
Latex:
((UnivCD THENA Auto) THEN ExRepD THEN Assert \mkleeneopen{}\mforall{}d:\mBbbN{}. ((n \mleq{} (m - d)) {}\mRightarrow{} (mu-ge(f;m - d) \mmember{} \{n...\}))\mkleeneclose{}\mcdot{})
Home
Index