Step * 2 of Lemma rem_gen_base_case


1. ∀a:ℤ. ∀n:ℕ+.  (|a| < |n|  ((a rem n) a ∈ ℤ))
⊢ ∀[a:ℤ]. ∀[n:ℤ-o].  (a rem n) a ∈ ℤ supposing |a| < |n|
BY
(Auto THEN Decide ⌜0 ≤ n⌝ THEN Auto) }

1
1. ∀a:ℤ. ∀n:ℕ+.  (|a| < |n|  ((a rem n) a ∈ ℤ))
2. : ℤ
3. : ℤ-o
4. |a| < |n|
5. ¬(0 ≤ n)
⊢ (a rem n) a ∈ ℤ


Latex:


Latex:

1.  \mforall{}a:\mBbbZ{}.  \mforall{}n:\mBbbN{}\msupplus{}.    (|a|  <  |n|  {}\mRightarrow{}  ((a  rem  n)  =  a))
\mvdash{}  \mforall{}[a:\mBbbZ{}].  \mforall{}[n:\mBbbZ{}\msupminus{}\msupzero{}].    (a  rem  n)  =  a  supposing  |a|  <  |n|


By


Latex:
(Auto  THEN  Decide  \mkleeneopen{}0  \mleq{}  n\mkleeneclose{}  THEN  Auto)




Home Index