Step
*
1
1
of Lemma
singleton_support_sum
1. n : ℕ
2. f : ℕn ⟶ ℤ
3. m : ℕn
4. ∀x:ℕn. ((¬(x = m ∈ ℤ))
⇒ (f[x] = 0 ∈ ℤ))
5. Σ(f[x] | x < n) = (f[m] + Σ(if (x =z m) then 0 else f[x] fi | x < n)) ∈ ℤ
⊢ Σ(f[x] | x < n) = f[m] ∈ ℤ
BY
{ Assert Σ(if (x =z m) then 0 else f[x] fi | x < n) = 0 ∈ ℤ }
1
.....assertion.....
1. n : ℕ
2. f : ℕn ⟶ ℤ
3. m : ℕn
4. ∀x:ℕn. ((¬(x = m ∈ ℤ))
⇒ (f[x] = 0 ∈ ℤ))
5. Σ(f[x] | x < n) = (f[m] + Σ(if (x =z m) then 0 else f[x] fi | x < n)) ∈ ℤ
⊢ Σ(if (x =z m) then 0 else f[x] fi | x < n) = 0 ∈ ℤ
2
1. n : ℕ
2. f : ℕn ⟶ ℤ
3. m : ℕn
4. ∀x:ℕn. ((¬(x = m ∈ ℤ))
⇒ (f[x] = 0 ∈ ℤ))
5. Σ(f[x] | x < n) = (f[m] + Σ(if (x =z m) then 0 else f[x] fi | x < n)) ∈ ℤ
6. Σ(if (x =z m) then 0 else f[x] fi | x < n) = 0 ∈ ℤ
⊢ Σ(f[x] | x < n) = f[m] ∈ ℤ
Latex:
Latex:
1. n : \mBbbN{}
2. f : \mBbbN{}n {}\mrightarrow{} \mBbbZ{}
3. m : \mBbbN{}n
4. \mforall{}x:\mBbbN{}n. ((\mneg{}(x = m)) {}\mRightarrow{} (f[x] = 0))
5. \mSigma{}(f[x] | x < n) = (f[m] + \mSigma{}(if (x =\msubz{} m) then 0 else f[x] fi | x < n))
\mvdash{} \mSigma{}(f[x] | x < n) = f[m]
By
Latex:
Assert \mSigma{}(if (x =\msubz{} m) then 0 else f[x] fi | x < n) = 0
Home
Index