Step
*
of Lemma
minus-polynom-val
∀[n:ℕ]. ∀[p:polyform(n)]. ∀[l:{l:ℤ List| ||l|| = n ∈ ℤ} ]. (l@minus-polynom(n;p) = (-l@p) ∈ ℤ)
BY
{ (InductionOnNat THEN (RecUnfold `polyform` 0 THEN RecUnfold `minus-polynom` 0) THEN Reduce 0) }
1
1. n : ℤ
⊢ ∀[p:ℤ]. ∀[l:{l:ℤ List| ||l|| = 0 ∈ ℤ} ]. (l@-p = (-l@p) ∈ ℤ)
2
1. n : ℤ
2. 0 < n
3. ∀[p:polyform(n - 1)]. ∀[l:{l:ℤ List| ||l|| = (n - 1) ∈ ℤ} ]. (l@minus-polynom(n - 1;p) = (-l@p) ∈ ℤ)
⊢ ∀[p:if (n =z 0) then ℤ else polyform(n - 1) List fi ]. ∀[l:{l:ℤ List| ||l|| = n ∈ ℤ} ].
(l@if n=0 then -p else map-rev(λq.minus-polynom(n - 1;q);p) = (-l@p) ∈ ℤ)
Latex:
Latex:
\mforall{}[n:\mBbbN{}]. \mforall{}[p:polyform(n)]. \mforall{}[l:\{l:\mBbbZ{} List| ||l|| = n\} ]. (l@minus-polynom(n;p) = (-l@p))
By
Latex:
(InductionOnNat THEN (RecUnfold `polyform` 0 THEN RecUnfold `minus-polynom` 0) THEN Reduce 0)
Home
Index