Nuprl Lemma : minus-polynom-val

[n:ℕ]. ∀[p:polyform(n)]. ∀[l:{l:ℤ List| ||l|| n ∈ ℤ].  (l@minus-polynom(n;p) (-l@p) ∈ ℤ)


Proof




Definitions occuring in Statement :  minus-polynom: minus-polynom(n;p) poly-int-val: l@p polyform: polyform(n) length: ||as|| list: List nat: uall: [x:A]. B[x] set: {x:A| B[x]}  minus: -n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A all: x:A. B[x] top: Top and: P ∧ Q prop: so_lambda: λ2x.t[x] subtype_rel: A ⊆B guard: {T} so_apply: x[s] polyform: polyform(n) minus-polynom: minus-polynom(n;p) eq_int: (i =z j) subtract: m ifthenelse: if then else fi  btrue: tt decidable: Dec(P) or: P ∨ Q poly-int-val: l@p null: null(as) nil: [] it: cons: [a b] le: A ≤ B bool: 𝔹 unit: Unit uiff: uiff(P;Q) bfalse: ff sq_type: SQType(T) bnot: ¬bb assert: b nequal: a ≠ b ∈  colength: colength(L) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] less_than: a < b squash: T less_than': less_than'(a;b) true: True iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf set_wf list_wf equal-wf-base less_than_transitivity1 less_than_irreflexivity polyform_wf le_wf decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma int_subtype_base equal-wf-base-T list_subtype_base nat_wf list-cases length_of_nil_lemma product_subtype_list length_of_cons_lemma le_weakening2 length_wf non_neg_length decidable__lt intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int le_weakening eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int minus-polynom_wf polyform-value-type map-rev-sq-map equal-wf-T-base colength_wf_list map_nil_lemma spread_cons_lemma set_subtype_base decidable__equal_int map_cons_lemma poly_int_val_nil_cons assert_wf bnot_wf not_wf cons_wf map_wf add-is-int-iff false_wf poly-int-val_wf exp_wf2 length_wf_nat uiff_transitivity iff_transitivity iff_weakening_uiff assert_of_bnot squash_wf true_wf poly_int_val_cons_cons minus_functionality_wrt_eq iff_weakening_equal length-map minus-is-int-iff itermMultiply_wf itermMinus_wf int_term_value_mul_lemma int_term_value_minus_lemma add_functionality_wrt_eq
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll independent_functionElimination axiomEquality baseApply closedConclusion baseClosed applyEquality because_Cache dependent_set_memberEquality unionElimination minusEquality promote_hyp hypothesis_subsumption productElimination equalityTransitivity equalitySymmetry equalityElimination int_eqReduceTrueSq instantiate cumulativity int_eqReduceFalseSq applyLambdaEquality addEquality imageElimination pointwiseFunctionality multiplyEquality impliesFunctionality universeEquality imageMemberEquality

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[p:polyform(n)].  \mforall{}[l:\{l:\mBbbZ{}  List|  ||l||  =  n\}  ].    (l@minus-polynom(n;p)  =  (-l@p))



Date html generated: 2017_09_29-PM-06_00_37
Last ObjectModification: 2017_04_27-PM-05_04_59

Theory : integer!polynomials


Home Index