Nuprl Lemma : poly_int_val_nil_cons

l,a:Top.  ([]@[a l] 0)


Proof




Definitions occuring in Statement :  poly-int-val: p@l cons: [a b] nil: [] top: Top all: x:A. B[x] natural_number: $n sqequal: t
Definitions unfolded in proof :  sum_aux: sum_aux(k;v;i;x.f[x]) sum: Σ(f[x] x < k) so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] it: nil: [] uimplies: supposing a uall: [x:A]. B[x] select: L[n] top: Top member: t ∈ T all: x:A. B[x]
Lemmas referenced :  top_wf base_wf stuck-spread length_of_nil_lemma poly_int_val_cons
Rules used in proof :  independent_isectElimination baseClosed isectElimination hypothesis hypothesisEquality voidEquality voidElimination isect_memberEquality thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction sqequalRule cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}l,a:Top.    ([]@[a  /  l]  \msim{}  0)



Date html generated: 2017_04_20-AM-07_09_00
Last ObjectModification: 2017_04_17-PM-00_04_51

Theory : list_1


Home Index