Nuprl Lemma : poly_int_val_nil_cons
∀l,a:Top.  ([]@[a / l] ~ 0)
Proof
Definitions occuring in Statement : 
poly-int-val: p@l
, 
cons: [a / b]
, 
nil: []
, 
top: Top
, 
all: ∀x:A. B[x]
, 
natural_number: $n
, 
sqequal: s ~ t
Definitions unfolded in proof : 
sum_aux: sum_aux(k;v;i;x.f[x])
, 
sum: Σ(f[x] | x < k)
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x y.t[x; y]
, 
it: ⋅
, 
nil: []
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
select: L[n]
, 
top: Top
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
Lemmas referenced : 
top_wf, 
base_wf, 
stuck-spread, 
length_of_nil_lemma, 
poly_int_val_cons
Rules used in proof : 
independent_isectElimination, 
baseClosed, 
isectElimination, 
hypothesis, 
hypothesisEquality, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
sqequalRule, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}l,a:Top.    ([]@[a  /  l]  \msim{}  0)
Date html generated:
2017_04_20-AM-07_09_00
Last ObjectModification:
2017_04_17-PM-00_04_51
Theory : list_1
Home
Index