Nuprl Lemma : poly_int_val_cons_cons

n:ℕ. ∀p:polyform(n) List. ∀l:{l:ℤ List| ||l|| n ∈ ℤ. ∀a:ℤ. ∀u:polyform(n).
  ([u p]@[a l] ((u@l a^||p||) p@[a l]) ∈ ℤ)


Proof




Definitions occuring in Statement :  poly-int-val: p@l polyform: polyform(n) exp: i^n length: ||as|| cons: [a b] list: List nat: all: x:A. B[x] set: {x:A| B[x]}  multiply: m add: m int: equal: t ∈ T
Definitions unfolded in proof :  subtract: m cons: [a b] select: L[n] rev_implies:  Q iff: ⇐⇒ Q true: True uiff: uiff(P;Q) less_than: a < b lelt: i ≤ j < k guard: {T} int_seg: {i..j-} not: ¬A implies:  Q false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) or: P ∨ Q decidable: Dec(P) and: P ∧ Q le: A ≤ B ge: i ≥  nat_plus: + squash: T top: Top so_apply: x[s] nat: uimplies: supposing a subtype_rel: A ⊆B so_lambda: λ2x.t[x] prop: uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x]
Lemmas referenced :  poly_int_val_cons int_term_value_mul_lemma itermMultiply_wf minus-one-mul minus-add subtract-is-int-iff add-subtract-cancel select-cons-tl int_formula_prop_eq_lemma intformeq_wf decidable__equal_int zero-add add-commutes add-swap add-zero mul-commutes minus-zero add-associates iff_weakening_equal sum_wf length_wf_nat int_seg_wf int_term_value_subtract_lemma itermSubtract_wf subtract_wf exp_wf2 false_wf add-is-int-iff le_wf decidable__le int_seg_properties select_wf poly-int-val_wf less_than_wf int_formula_prop_wf int_formula_prop_le_lemma int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformle_wf itermVar_wf itermAdd_wf itermConstant_wf intformless_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__lt nat_properties non_neg_length length_of_cons_lemma cons_wf length_wf sum_split_first true_wf squash_wf equal_wf nat_wf int_subtype_base list_subtype_base equal-wf-base-T list_wf set_wf polyform_wf
Rules used in proof :  minusEquality independent_functionElimination imageMemberEquality promote_hyp pointwiseFunctionality multiplyEquality computeAll independent_pairFormation int_eqEquality dependent_pairFormation unionElimination productElimination addEquality natural_numberEquality dependent_functionElimination dependent_set_memberEquality because_Cache universeEquality equalitySymmetry equalityTransitivity imageElimination voidEquality voidElimination isect_memberEquality rename setElimination independent_isectElimination applyEquality baseClosed closedConclusion baseApply lambdaEquality sqequalRule intEquality hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction hypothesis cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}p:polyform(n)  List.  \mforall{}l:\{l:\mBbbZ{}  List|  ||l||  =  n\}  .  \mforall{}a:\mBbbZ{}.  \mforall{}u:polyform(n).
    ([u  /  p]@[a  /  l]  =  ((u@l  *  a\^{}||p||)  +  p@[a  /  l]))



Date html generated: 2017_04_20-AM-07_08_45
Last ObjectModification: 2017_04_17-AM-11_47_38

Theory : list_1


Home Index