Nuprl Lemma : poly_int_val_cons_cons
∀n:ℕ. ∀p:polyform(n) List. ∀l:{l:ℤ List| ||l|| = n ∈ ℤ} . ∀a:ℤ. ∀u:polyform(n).
  ([u / p]@[a / l] = ((u@l * a^||p||) + p@[a / l]) ∈ ℤ)
Proof
Definitions occuring in Statement : 
poly-int-val: p@l
, 
polyform: polyform(n)
, 
exp: i^n
, 
length: ||as||
, 
cons: [a / b]
, 
list: T List
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
set: {x:A| B[x]} 
, 
multiply: n * m
, 
add: n + m
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
subtract: n - m
, 
cons: [a / b]
, 
select: L[n]
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
true: True
, 
uiff: uiff(P;Q)
, 
less_than: a < b
, 
lelt: i ≤ j < k
, 
guard: {T}
, 
int_seg: {i..j-}
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
and: P ∧ Q
, 
le: A ≤ B
, 
ge: i ≥ j 
, 
nat_plus: ℕ+
, 
squash: ↓T
, 
top: Top
, 
so_apply: x[s]
, 
nat: ℕ
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
Lemmas referenced : 
poly_int_val_cons, 
int_term_value_mul_lemma, 
itermMultiply_wf, 
minus-one-mul, 
minus-add, 
subtract-is-int-iff, 
add-subtract-cancel, 
select-cons-tl, 
int_formula_prop_eq_lemma, 
intformeq_wf, 
decidable__equal_int, 
zero-add, 
add-commutes, 
add-swap, 
add-zero, 
mul-commutes, 
minus-zero, 
add-associates, 
iff_weakening_equal, 
sum_wf, 
length_wf_nat, 
int_seg_wf, 
int_term_value_subtract_lemma, 
itermSubtract_wf, 
subtract_wf, 
exp_wf2, 
false_wf, 
add-is-int-iff, 
le_wf, 
decidable__le, 
int_seg_properties, 
select_wf, 
poly-int-val_wf, 
less_than_wf, 
int_formula_prop_wf, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
intformle_wf, 
itermVar_wf, 
itermAdd_wf, 
itermConstant_wf, 
intformless_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__lt, 
nat_properties, 
non_neg_length, 
length_of_cons_lemma, 
cons_wf, 
length_wf, 
sum_split_first, 
true_wf, 
squash_wf, 
equal_wf, 
nat_wf, 
int_subtype_base, 
list_subtype_base, 
equal-wf-base-T, 
list_wf, 
set_wf, 
polyform_wf
Rules used in proof : 
minusEquality, 
independent_functionElimination, 
imageMemberEquality, 
promote_hyp, 
pointwiseFunctionality, 
multiplyEquality, 
computeAll, 
independent_pairFormation, 
int_eqEquality, 
dependent_pairFormation, 
unionElimination, 
productElimination, 
addEquality, 
natural_numberEquality, 
dependent_functionElimination, 
dependent_set_memberEquality, 
because_Cache, 
universeEquality, 
equalitySymmetry, 
equalityTransitivity, 
imageElimination, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
rename, 
setElimination, 
independent_isectElimination, 
applyEquality, 
baseClosed, 
closedConclusion, 
baseApply, 
lambdaEquality, 
sqequalRule, 
intEquality, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
hypothesis, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}n:\mBbbN{}.  \mforall{}p:polyform(n)  List.  \mforall{}l:\{l:\mBbbZ{}  List|  ||l||  =  n\}  .  \mforall{}a:\mBbbZ{}.  \mforall{}u:polyform(n).
    ([u  /  p]@[a  /  l]  =  ((u@l  *  a\^{}||p||)  +  p@[a  /  l]))
Date html generated:
2017_04_20-AM-07_08_45
Last ObjectModification:
2017_04_17-AM-11_47_38
Theory : list_1
Home
Index