Nuprl Lemma : polyform_wf

[n:ℕ]. (polyform(n) ∈ Type)


Proof




Definitions occuring in Statement :  polyform: polyform(n) nat: uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  less_than: a < b int_upper: {i...} assert: b bnot: ¬bb sq_type: SQType(T) bfalse: ff uiff: uiff(P;Q) ifthenelse: if then else fi  btrue: tt it: unit: Unit bool: 𝔹 polyform: polyform(n) less_than': less_than'(a;b) le: A ≤ B subtype_rel: A ⊆B or: P ∨ Q decidable: Dec(P) lelt: i ≤ j < k int_seg: {i..j-} guard: {T} prop: and: P ∧ Q top: Top not: ¬A exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) uimplies: supposing a ge: i ≥  false: False implies:  Q nat: all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  nat_wf int_term_value_add_lemma itermAdd_wf lelt_wf decidable__lt int_upper_properties list_wf zero-add nequal-le-implies int_upper_subtype_nat neg_assert_of_eq_int assert-bnot bool_subtype_base subtype_base_sq bool_cases_sqequal equal_wf eqff_to_assert assert_of_eq_int eqtt_to_assert bool_wf eq_int_wf le_wf int_formula_prop_eq_lemma intformeq_wf false_wf int_seg_subtype decidable__equal_int int_term_value_subtract_lemma int_formula_prop_not_lemma itermSubtract_wf intformnot_wf subtract_wf decidable__le int_seg_properties int_seg_wf less_than_wf ge_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermConstant_wf intformle_wf intformand_wf satisfiable-full-omega-tt nat_properties
Rules used in proof :  addEquality cumulativity instantiate promote_hyp equalityElimination dependent_set_memberEquality hypothesis_subsumption applyLambdaEquality applyEquality unionElimination productElimination because_Cache equalitySymmetry equalityTransitivity axiomEquality independent_functionElimination computeAll independent_pairFormation voidEquality voidElimination isect_memberEquality dependent_functionElimination intEquality int_eqEquality lambdaEquality dependent_pairFormation independent_isectElimination natural_numberEquality intWeakElimination sqequalRule rename setElimination hypothesis hypothesisEquality isectElimination sqequalHypSubstitution extract_by_obid lambdaFormation thin cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[n:\mBbbN{}].  (polyform(n)  \mmember{}  Type)



Date html generated: 2017_04_17-AM-09_01_09
Last ObjectModification: 2017_04_13-AM-11_51_06

Theory : list_1


Home Index