Nuprl Lemma : poly-int-val_wf

[n:ℕ]. ∀[l:{l:ℤ List| ||l|| n ∈ ℤ]. ∀[p:polyform(n)].  (p@l ∈ ℤ)


Proof




Definitions occuring in Statement :  poly-int-val: p@l polyform: polyform(n) length: ||as|| list: List nat: uall: [x:A]. B[x] member: t ∈ T set: {x:A| B[x]}  int: equal: t ∈ T
Definitions unfolded in proof :  rev_implies:  Q iff: ⇐⇒ Q sq_type: SQType(T) squash: T less_than: a < b uiff: uiff(P;Q) lelt: i ≤ j < k int_seg: {i..j-} bfalse: ff so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] btrue: tt ifthenelse: if then else fi  poly-int-val: p@l less_than': less_than'(a;b) le: A ≤ B decidable: Dec(P) cons: [a b] polyform: polyform(n) or: P ∨ Q so_apply: x[s] guard: {T} subtype_rel: A ⊆B so_lambda: λ2x.t[x] prop: and: P ∧ Q top: Top all: x:A. B[x] not: ¬A exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) uimplies: supposing a ge: i ≥  false: False implies:  Q nat: member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  assert_of_bnot iff_weakening_uiff iff_transitivity eqff_to_assert assert_of_eq_int eqtt_to_assert bool_subtype_base bool_wf subtype_base_sq bool_cases int_seg_wf exp_wf2 select_wf add-is-int-iff decidable__equal_int int_seg_properties length_wf_nat sum_wf spread_cons_lemma null_cons_lemma le_weakening not_wf bnot_wf assert_wf null_nil_lemma eq_int_wf nat_wf list_subtype_base equal-wf-base-T int_subtype_base int_term_value_subtract_lemma int_formula_prop_not_lemma itermSubtract_wf intformnot_wf subtract_wf decidable__le le_wf false_wf int_term_value_add_lemma int_formula_prop_eq_lemma itermAdd_wf intformeq_wf decidable__lt non_neg_length length_wf le_weakening2 length_of_cons_lemma product_subtype_list length_of_nil_lemma list-cases less_than_irreflexivity less_than_transitivity1 equal-wf-base list_wf set_wf polyform_wf less_than_wf ge_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermConstant_wf intformle_wf intformand_wf satisfiable-full-omega-tt nat_properties
Rules used in proof :  impliesFunctionality cumulativity instantiate imageElimination pointwiseFunctionality multiplyEquality dependent_set_memberEquality productElimination hypothesis_subsumption promote_hyp unionElimination because_Cache applyEquality baseClosed closedConclusion baseApply equalitySymmetry equalityTransitivity axiomEquality independent_functionElimination computeAll independent_pairFormation voidEquality voidElimination isect_memberEquality dependent_functionElimination intEquality int_eqEquality lambdaEquality dependent_pairFormation independent_isectElimination natural_numberEquality lambdaFormation intWeakElimination sqequalRule rename setElimination hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[l:\{l:\mBbbZ{}  List|  ||l||  =  n\}  ].  \mforall{}[p:polyform(n)].    (p@l  \mmember{}  \mBbbZ{})



Date html generated: 2017_04_17-AM-09_04_33
Last ObjectModification: 2017_04_13-PM-00_43_05

Theory : list_1


Home Index