Nuprl Lemma : map-rev-sq-map
∀[A,B:Type]. ∀[f:A ⟶ B]. ∀[as:A List].  map-rev(f;as) ~ map(f;as) supposing value-type(B)
Proof
Definitions occuring in Statement : 
map-rev: map-rev(f;L)
, 
map: map(f;as)
, 
list: T List
, 
value-type: value-type(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
map-rev: map-rev(f;L)
, 
has-value: (a)↓
, 
subtype_rel: A ⊆r B
, 
top: Top
Lemmas referenced : 
value-type-has-value, 
list_wf, 
list-value-type, 
rev-map-append_wf, 
nil_wf, 
rev-map-append-sq, 
append_back_nil, 
reverse_wf, 
map_wf, 
reverse-reverse, 
subtype_rel_list, 
top_wf, 
value-type_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
callbyvalueReduce, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
independent_isectElimination, 
functionExtensionality, 
applyEquality, 
because_Cache, 
lambdaEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalAxiom, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
universeEquality
Latex:
\mforall{}[A,B:Type].  \mforall{}[f:A  {}\mrightarrow{}  B].  \mforall{}[as:A  List].    map-rev(f;as)  \msim{}  map(f;as)  supposing  value-type(B)
Date html generated:
2017_09_29-PM-05_59_37
Last ObjectModification:
2017_04_27-PM-04_58_27
Theory : list_1
Home
Index