Nuprl Lemma : map-rev-sq-map

[A,B:Type]. ∀[f:A ⟶ B]. ∀[as:A List].  map-rev(f;as) map(f;as) supposing value-type(B)


Proof




Definitions occuring in Statement :  map-rev: map-rev(f;L) map: map(f;as) list: List value-type: value-type(T) uimplies: supposing a uall: [x:A]. B[x] function: x:A ⟶ B[x] universe: Type sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a map-rev: map-rev(f;L) has-value: (a)↓ subtype_rel: A ⊆B top: Top
Lemmas referenced :  value-type-has-value list_wf list-value-type rev-map-append_wf nil_wf rev-map-append-sq append_back_nil reverse_wf map_wf reverse-reverse subtype_rel_list top_wf value-type_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule callbyvalueReduce extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality hypothesis independent_isectElimination functionExtensionality applyEquality because_Cache lambdaEquality isect_memberEquality voidElimination voidEquality sqequalAxiom equalityTransitivity equalitySymmetry functionEquality universeEquality

Latex:
\mforall{}[A,B:Type].  \mforall{}[f:A  {}\mrightarrow{}  B].  \mforall{}[as:A  List].    map-rev(f;as)  \msim{}  map(f;as)  supposing  value-type(B)



Date html generated: 2017_09_29-PM-05_59_37
Last ObjectModification: 2017_04_27-PM-04_58_27

Theory : list_1


Home Index