Nuprl Lemma : rev-map-append-sq

[A,B:Type].
  ∀[f:A ⟶ B]. ∀[as:A List]. ∀[bs:B List].  (rev-map-append(f;as;bs) rev(map(f;as)) bs) supposing value-type(B)


Proof




Definitions occuring in Statement :  rev-map-append: rev-map-append(f;as;bs) reverse: rev(as) map: map(f;as) append: as bs list: List value-type: value-type(T) uimplies: supposing a uall: [x:A]. B[x] function: x:A ⟶ B[x] universe: Type sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q prop: guard: {T} or: P ∨ Q rev-map-append: rev-map-append(f;as;bs) nil: [] it: append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] cons: [a b] le: A ≤ B less_than': less_than'(a;b) colength: colength(L) so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than: a < b squash: T so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] decidable: Dec(P) subtype_rel: A ⊆B has-value: (a)↓
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf intformeq_wf int_formula_prop_eq_lemma list-cases map_nil_lemma reverse_nil_lemma list_ind_nil_lemma list_wf product_subtype_list colength-cons-not-zero colength_wf_list istype-false le_wf subtract-1-ge-0 subtype_base_sq set_subtype_base int_subtype_base spread_cons_lemma decidable__equal_int subtract_wf intformnot_wf itermSubtract_wf itermAdd_wf int_formula_prop_not_lemma int_term_value_subtract_lemma int_term_value_add_lemma decidable__le map_cons_lemma reverse-cons value-type-has-value cons_wf append_assoc list_ind_cons_lemma nat_wf istype-universe value-type_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut thin Error :lambdaFormation_alt,  extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  int_eqEquality dependent_functionElimination Error :isect_memberEquality_alt,  voidElimination sqequalRule independent_pairFormation Error :universeIsType,  axiomSqEquality equalityTransitivity equalitySymmetry applyLambdaEquality Error :functionIsTypeImplies,  Error :inhabitedIsType,  unionElimination callbyvalueReduce sqleReflexivity promote_hyp hypothesis_subsumption productElimination Error :equalityIsType1,  because_Cache Error :dependent_set_memberEquality_alt,  instantiate imageElimination Error :equalityIsType4,  baseApply closedConclusion baseClosed applyEquality intEquality Error :functionIsType,  universeEquality

Latex:
\mforall{}[A,B:Type].
    \mforall{}[f:A  {}\mrightarrow{}  B].  \mforall{}[as:A  List].  \mforall{}[bs:B  List].    (rev-map-append(f;as;bs)  \msim{}  rev(map(f;as))  @  bs) 
    supposing  value-type(B)



Date html generated: 2019_06_20-PM-01_49_01
Last ObjectModification: 2018_10_07-AM-00_07_24

Theory : list_1


Home Index