Nuprl Lemma : rev-map-append-sq
∀[A,B:Type].
  ∀[f:A ⟶ B]. ∀[as:A List]. ∀[bs:B List].  (rev-map-append(f;as;bs) ~ rev(map(f;as)) @ bs) supposing value-type(B)
Proof
Definitions occuring in Statement : 
rev-map-append: rev-map-append(f;as;bs)
, 
reverse: rev(as)
, 
map: map(f;as)
, 
append: as @ bs
, 
list: T List
, 
value-type: value-type(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
guard: {T}
, 
or: P ∨ Q
, 
rev-map-append: rev-map-append(f;as;bs)
, 
nil: []
, 
it: ⋅
, 
append: as @ bs
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
, 
cons: [a / b]
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
colength: colength(L)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
sq_type: SQType(T)
, 
less_than: a < b
, 
squash: ↓T
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
decidable: Dec(P)
, 
subtype_rel: A ⊆r B
, 
has-value: (a)↓
Lemmas referenced : 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
list-cases, 
map_nil_lemma, 
reverse_nil_lemma, 
list_ind_nil_lemma, 
list_wf, 
product_subtype_list, 
colength-cons-not-zero, 
colength_wf_list, 
istype-false, 
le_wf, 
subtract-1-ge-0, 
subtype_base_sq, 
set_subtype_base, 
int_subtype_base, 
spread_cons_lemma, 
decidable__equal_int, 
subtract_wf, 
intformnot_wf, 
itermSubtract_wf, 
itermAdd_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
int_term_value_add_lemma, 
decidable__le, 
map_cons_lemma, 
reverse-cons, 
value-type-has-value, 
cons_wf, 
append_assoc, 
list_ind_cons_lemma, 
nat_wf, 
istype-universe, 
value-type_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
thin, 
Error :lambdaFormation_alt, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
Error :dependent_pairFormation_alt, 
Error :lambdaEquality_alt, 
int_eqEquality, 
dependent_functionElimination, 
Error :isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
independent_pairFormation, 
Error :universeIsType, 
axiomSqEquality, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
Error :functionIsTypeImplies, 
Error :inhabitedIsType, 
unionElimination, 
callbyvalueReduce, 
sqleReflexivity, 
promote_hyp, 
hypothesis_subsumption, 
productElimination, 
Error :equalityIsType1, 
because_Cache, 
Error :dependent_set_memberEquality_alt, 
instantiate, 
imageElimination, 
Error :equalityIsType4, 
baseApply, 
closedConclusion, 
baseClosed, 
applyEquality, 
intEquality, 
Error :functionIsType, 
universeEquality
Latex:
\mforall{}[A,B:Type].
    \mforall{}[f:A  {}\mrightarrow{}  B].  \mforall{}[as:A  List].  \mforall{}[bs:B  List].    (rev-map-append(f;as;bs)  \msim{}  rev(map(f;as))  @  bs) 
    supposing  value-type(B)
Date html generated:
2019_06_20-PM-01_49_01
Last ObjectModification:
2018_10_07-AM-00_07_24
Theory : list_1
Home
Index