Nuprl Lemma : assert-null-base

[as:Base]. uiff(null(as) tt;as [])


Proof




Definitions occuring in Statement :  null: null(as) nil: [] btrue: tt uiff: uiff(P;Q) uall: [x:A]. B[x] base: Base sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a bool: 𝔹 null: null(as) has-value: (a)↓ sq_type: SQType(T) all: x:A. B[x] implies:  Q guard: {T} nil: [] it: btrue: tt or: P ∨ Q bfalse: ff not: ¬A false: False
Lemmas referenced :  not-btrue-sqeq-bfalse bottom_diverge has-value-implies-dec-ispair-2 has-value-implies-dec-isaxiom-2 base_wf btrue_wf unit_wf2 union-value-type bool_wf value-type-has-value subtype_rel_self subtype_base_sq
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation thin instantiate lemma_by_obid sqequalHypSubstitution isectElimination because_Cache independent_isectElimination hypothesis sqequalRule callbyvalueIspair dependent_functionElimination hypothesisEquality equalityTransitivity equalitySymmetry independent_functionElimination sqequalAxiom sqequalIntensionalEquality baseApply closedConclusion baseClosed productElimination independent_pairEquality isect_memberEquality unionElimination voidElimination

Latex:
\mforall{}[as:Base].  uiff(null(as)  \msim{}  tt;as  \msim{}  [])



Date html generated: 2016_05_14-AM-06_30_39
Last ObjectModification: 2016_01_14-PM-08_25_15

Theory : list_0


Home Index