Nuprl Lemma : eager-product-map_wf
∀[T:Type]
  ∀[A,B:Type]. ∀[f:A ⟶ B ⟶ T]. ∀[as:A List]. ∀[bs:B List].  (eager-product-map(f;as;bs) ∈ T List) 
  supposing value-type(T)
Proof
Definitions occuring in Statement : 
eager-product-map: eager-product-map(f;as;bs)
, 
list: T List
, 
value-type: value-type(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
eager-product-map: eager-product-map(f;as;bs)
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
Lemmas referenced : 
list_ind_wf, 
list_wf, 
nil_wf, 
eager-map-append_wf, 
value-type_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
independent_isectElimination, 
applyEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache, 
functionEquality, 
universeEquality
Latex:
\mforall{}[T:Type]
    \mforall{}[A,B:Type].  \mforall{}[f:A  {}\mrightarrow{}  B  {}\mrightarrow{}  T].  \mforall{}[as:A  List].  \mforall{}[bs:B  List].    (eager-product-map(f;as;bs)  \mmember{}  T  List) 
    supposing  value-type(T)
Date html generated:
2016_05_14-AM-06_30_11
Last ObjectModification:
2015_12_26-PM-00_39_35
Theory : list_0
Home
Index