Nuprl Lemma : eager-product-map_wf

[T:Type]
  ∀[A,B:Type]. ∀[f:A ⟶ B ⟶ T]. ∀[as:A List]. ∀[bs:B List].  (eager-product-map(f;as;bs) ∈ List) 
  supposing value-type(T)


Proof




Definitions occuring in Statement :  eager-product-map: eager-product-map(f;as;bs) list: List value-type: value-type(T) uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a eager-product-map: eager-product-map(f;as;bs) so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3]
Lemmas referenced :  list_ind_wf list_wf nil_wf eager-map-append_wf value-type_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis lambdaEquality independent_isectElimination applyEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache functionEquality universeEquality

Latex:
\mforall{}[T:Type]
    \mforall{}[A,B:Type].  \mforall{}[f:A  {}\mrightarrow{}  B  {}\mrightarrow{}  T].  \mforall{}[as:A  List].  \mforall{}[bs:B  List].    (eager-product-map(f;as;bs)  \mmember{}  T  List) 
    supposing  value-type(T)



Date html generated: 2016_05_14-AM-06_30_11
Last ObjectModification: 2015_12_26-PM-00_39_35

Theory : list_0


Home Index