Nuprl Lemma : free-from-atom-l_member
∀[T:Type]. ∀[L:T List]. ∀[a:Atom1]. ∀[x:T].  (a#x:T) supposing (a#L:T List and (x ∈ L))
Proof
Definitions occuring in Statement : 
l_member: (x ∈ l)
, 
list: T List
, 
free-from-atom: a#x:T
, 
atom: Atom$n
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
l_member: (x ∈ l)
, 
exists: ∃x:A. B[x]
, 
cand: A c∧ B
, 
prop: ℙ
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
sq_stable: SqStable(P)
, 
implies: P 
⇒ Q
, 
squash: ↓T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
free-from-atom_wf, 
list_wf, 
l_member_wf, 
less_than_wf, 
length_wf, 
nat_wf, 
select_wf, 
sq_stable__le, 
set_wf, 
free-from-atom-nat
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
equalityElimination, 
hypothesis, 
hyp_replacement, 
equalitySymmetry, 
Error :applyLambdaEquality, 
extract_by_obid, 
isectElimination, 
cumulativity, 
hypothesisEquality, 
sqequalRule, 
freeFromAtomAxiom, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
atomnEquality, 
universeEquality, 
dependent_set_memberEquality, 
setElimination, 
rename, 
freeFromAtomApplication, 
freeFromAtomTriviality, 
lambdaEquality, 
lambdaFormation, 
independent_isectElimination, 
natural_numberEquality, 
independent_functionElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
freeFromAtomSet
Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[a:Atom1].  \mforall{}[x:T].    (a\#x:T)  supposing  (a\#L:T  List  and  (x  \mmember{}  L))
Date html generated:
2016_10_21-AM-09_48_32
Last ObjectModification:
2016_07_12-AM-05_08_32
Theory : list_0
Home
Index