Nuprl Lemma : free-from-atom-nat
∀[a:Atom1]. ∀[n:ℕ].  a#n:ℕ
Proof
Definitions occuring in Statement : 
nat: ℕ
, 
free-from-atom: a#x:T
, 
atom: Atom$n
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
true: True
, 
less_than': less_than'(a;b)
, 
le: A ≤ B
, 
top: Top
, 
subtype_rel: A ⊆r B
, 
subtract: n - m
, 
uiff: uiff(P;Q)
, 
rev_implies: P 
⇐ Q
, 
not: ¬A
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
all: ∀x:A. B[x]
, 
prop: ℙ
, 
uimplies: b supposing a
, 
guard: {T}
, 
ge: i ≥ j 
, 
false: False
, 
implies: P 
⇒ Q
, 
nat: ℕ
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
subtract-add-cancel, 
not-le-2, 
le_reflexive, 
le_wf, 
nat_properties, 
less_than_transitivity1, 
less_than_irreflexivity, 
ge_wf, 
less_than_wf, 
decidable__le, 
subtract_wf, 
false_wf, 
not-ge-2, 
less-iff-le, 
condition-implies-le, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
minus-add, 
minus-minus, 
add-associates, 
add-swap, 
add-commutes, 
add_functionality_wrt_le, 
add-zero, 
le-add-cancel, 
nat_wf
Rules used in proof : 
atomnEquality, 
because_Cache, 
minusEquality, 
intEquality, 
voidEquality, 
isect_memberEquality, 
applyEquality, 
addEquality, 
productElimination, 
independent_pairFormation, 
unionElimination, 
freeFromAtomAxiom, 
dependent_functionElimination, 
lambdaEquality, 
sqequalRule, 
voidElimination, 
independent_functionElimination, 
independent_isectElimination, 
natural_numberEquality, 
lambdaFormation, 
intWeakElimination, 
rename, 
setElimination, 
hypothesis, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
lemma_by_obid, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
dependent_set_memberEquality, 
freeFromAtomTriviality, 
extract_by_obid, 
freeFromAtomApplication
Latex:
\mforall{}[a:Atom1].  \mforall{}[n:\mBbbN{}].    a\#n:\mBbbN{}
Date html generated:
2019_06_20-PM-00_25_47
Last ObjectModification:
2018_08_15-PM-03_08_53
Theory : int_1
Home
Index