Nuprl Lemma : free-from-atom-nat

[a:Atom1]. ∀[n:ℕ].  a#n:ℕ


Proof




Definitions occuring in Statement :  nat: free-from-atom: a#x:T atom: Atom$n uall: [x:A]. B[x]
Definitions unfolded in proof :  true: True less_than': less_than'(a;b) le: A ≤ B top: Top subtype_rel: A ⊆B subtract: m uiff: uiff(P;Q) rev_implies:  Q not: ¬A and: P ∧ Q iff: ⇐⇒ Q or: P ∨ Q decidable: Dec(P) all: x:A. B[x] prop: uimplies: supposing a guard: {T} ge: i ≥  false: False implies:  Q nat: member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  subtract-add-cancel not-le-2 le_reflexive le_wf nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf decidable__le subtract_wf false_wf not-ge-2 less-iff-le condition-implies-le minus-one-mul zero-add minus-one-mul-top minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel nat_wf
Rules used in proof :  atomnEquality because_Cache minusEquality intEquality voidEquality isect_memberEquality applyEquality addEquality productElimination independent_pairFormation unionElimination freeFromAtomAxiom dependent_functionElimination lambdaEquality sqequalRule voidElimination independent_functionElimination independent_isectElimination natural_numberEquality lambdaFormation intWeakElimination rename setElimination hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution lemma_by_obid cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution dependent_set_memberEquality freeFromAtomTriviality extract_by_obid freeFromAtomApplication

Latex:
\mforall{}[a:Atom1].  \mforall{}[n:\mBbbN{}].    a\#n:\mBbbN{}



Date html generated: 2019_06_20-PM-00_25_47
Last ObjectModification: 2018_08_15-PM-03_08_53

Theory : int_1


Home Index