Nuprl Lemma : hd_member
∀[T:Type]. ∀L:T List. (hd(L) ∈ L) supposing ¬↑null(L)
Proof
Definitions occuring in Statement : 
l_member: (x ∈ l)
, 
hd: hd(l)
, 
null: null(as)
, 
list: T List
, 
assert: ↑b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
prop: ℙ
, 
or: P ∨ Q
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
true: True
, 
cons: [a / b]
, 
top: Top
, 
bfalse: ff
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
assert_wf, 
null_wf, 
list-cases, 
null_nil_lemma, 
product_subtype_list, 
null_cons_lemma, 
reduce_hd_cons_lemma, 
cons_member, 
l_member_wf, 
not_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
introduction, 
sqequalRule, 
sqequalHypSubstitution, 
lambdaEquality, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
voidElimination, 
lemma_by_obid, 
isectElimination, 
hypothesis, 
rename, 
unionElimination, 
independent_functionElimination, 
natural_numberEquality, 
promote_hyp, 
hypothesis_subsumption, 
productElimination, 
isect_memberEquality, 
voidEquality, 
because_Cache, 
inlFormation, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}L:T  List.  (hd(L)  \mmember{}  L)  supposing  \mneg{}\muparrow{}null(L)
Date html generated:
2016_05_14-AM-06_52_26
Last ObjectModification:
2015_12_26-PM-00_21_11
Theory : list_0
Home
Index