Nuprl Lemma : imax-list_wf
∀[L:ℤ List]. imax-list(L) ∈ ℤ supposing 0 < ||L||
Proof
Definitions occuring in Statement : 
imax-list: imax-list(L)
, 
length: ||as||
, 
list: T List
, 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
imax-list: imax-list(L)
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
prop: ℙ
Lemmas referenced : 
combine-list_wf, 
imax_wf, 
less_than_wf, 
length_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
intEquality, 
lambdaEquality, 
hypothesisEquality, 
hypothesis, 
independent_isectElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
natural_numberEquality, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[L:\mBbbZ{}  List].  imax-list(L)  \mmember{}  \mBbbZ{}  supposing  0  <  ||L||
Date html generated:
2016_05_14-AM-06_43_42
Last ObjectModification:
2015_12_26-PM-00_28_06
Theory : list_0
Home
Index