Nuprl Lemma : imax-list_wf

[L:ℤ List]. imax-list(L) ∈ ℤ supposing 0 < ||L||


Proof




Definitions occuring in Statement :  imax-list: imax-list(L) length: ||as|| list: List less_than: a < b uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a imax-list: imax-list(L) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] prop:
Lemmas referenced :  combine-list_wf imax_wf less_than_wf length_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin intEquality lambdaEquality hypothesisEquality hypothesis independent_isectElimination axiomEquality equalityTransitivity equalitySymmetry natural_numberEquality isect_memberEquality because_Cache

Latex:
\mforall{}[L:\mBbbZ{}  List].  imax-list(L)  \mmember{}  \mBbbZ{}  supposing  0  <  ||L||



Date html generated: 2016_05_14-AM-06_43_42
Last ObjectModification: 2015_12_26-PM-00_28_06

Theory : list_0


Home Index