Nuprl Lemma : insert-int-cons

v:ℤ List. ∀u,a:ℤ.  (insert-int(a;[u v]) if u <then [u insert-int(a;v)] else [a; [u v]] fi )


Proof




Definitions occuring in Statement :  insert-int: insert-int(x;l) cons: [a b] list: List ifthenelse: if then else fi  lt_int: i <j all: x:A. B[x] int: sqequal: t
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a insert-int: insert-int(x;l) so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3] has-value: (a)↓ implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q less_than: a < b less_than': less_than'(a;b) true: True squash: T not: ¬A false: False prop: ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b
Lemmas referenced :  subtype_base_sq list_wf list_subtype_base int_subtype_base list_ind_cons_lemma value-type-has-value list-value-type insert-int_wf subtype_rel_self eqtt_to_assert assert_of_lt_int top_wf less_than_wf cons_wf eqff_to_assert equal_wf bool_wf bool_cases_sqequal bool_subtype_base assert-bnot
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut thin instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination cumulativity intEquality hypothesis independent_isectElimination sqequalRule dependent_functionElimination isect_memberEquality voidElimination voidEquality callbyvalueReduce hypothesisEquality because_Cache unionElimination equalityElimination productElimination lessCases isect_memberFormation sqequalAxiom independent_pairFormation natural_numberEquality imageMemberEquality baseClosed imageElimination independent_functionElimination dependent_pairFormation equalityTransitivity equalitySymmetry promote_hyp

Latex:
\mforall{}v:\mBbbZ{}  List.  \mforall{}u,a:\mBbbZ{}.
    (insert-int(a;[u  /  v])  \msim{}  if  u  <z  a  then  [u  /  insert-int(a;v)]  else  [a;  [u  /  v]]  fi  )



Date html generated: 2017_09_29-PM-05_48_25
Last ObjectModification: 2017_05_03-PM-03_18_30

Theory : list_0


Home Index