Nuprl Lemma : insert-int-cons
∀v:ℤ List. ∀u,a:ℤ.  (insert-int(a;[u / v]) ~ if u <z a then [u / insert-int(a;v)] else [a; [u / v]] fi )
Proof
Definitions occuring in Statement : 
insert-int: insert-int(x;l)
, 
cons: [a / b]
, 
list: T List
, 
ifthenelse: if b then t else f fi 
, 
lt_int: i <z j
, 
all: ∀x:A. B[x]
, 
int: ℤ
, 
sqequal: s ~ t
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
insert-int: insert-int(x;l)
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
top: Top
, 
so_apply: x[s1;s2;s3]
, 
has-value: (a)↓
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
less_than: a < b
, 
less_than': less_than'(a;b)
, 
true: True
, 
squash: ↓T
, 
not: ¬A
, 
false: False
, 
prop: ℙ
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
Lemmas referenced : 
subtype_base_sq, 
list_wf, 
list_subtype_base, 
int_subtype_base, 
list_ind_cons_lemma, 
value-type-has-value, 
list-value-type, 
insert-int_wf, 
subtype_rel_self, 
eqtt_to_assert, 
assert_of_lt_int, 
top_wf, 
less_than_wf, 
cons_wf, 
eqff_to_assert, 
equal_wf, 
bool_wf, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
thin, 
instantiate, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
cumulativity, 
intEquality, 
hypothesis, 
independent_isectElimination, 
sqequalRule, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
callbyvalueReduce, 
hypothesisEquality, 
because_Cache, 
unionElimination, 
equalityElimination, 
productElimination, 
lessCases, 
isect_memberFormation, 
sqequalAxiom, 
independent_pairFormation, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
independent_functionElimination, 
dependent_pairFormation, 
equalityTransitivity, 
equalitySymmetry, 
promote_hyp
Latex:
\mforall{}v:\mBbbZ{}  List.  \mforall{}u,a:\mBbbZ{}.
    (insert-int(a;[u  /  v])  \msim{}  if  u  <z  a  then  [u  /  insert-int(a;v)]  else  [a;  [u  /  v]]  fi  )
Date html generated:
2017_09_29-PM-05_48_25
Last ObjectModification:
2017_05_03-PM-03_18_30
Theory : list_0
Home
Index