Step
*
5
1
of Lemma
insert-int-lex
1. u : ℤ
2. v : ℤ List
3. ∀bs:ℤ List. ∀x:ℤ. ((↑v ≤_lex bs)
⇒ (↑insert-int(x;v) ≤_lex insert-int(x;bs)))
4. u1 : ℤ
5. v1 : ℤ List
6. ∀x:ℤ. ((↑[u / v] ≤_lex v1)
⇒ (↑insert-int(x;[u / v]) ≤_lex insert-int(x;v1)))
7. x : ℤ
8. ¬u < x
9. ↑[u / v] ≤_lex [u1 / v1]
10. u1 < x
11. u1 < u
⊢ ↑[x; [u / v]] ≤_lex [u1 / insert-int(x;v1)]
BY
{ ((BLemma `intlex-cons` THEN Auto) THEN OrLeft THEN Auto) }
1
1. u : ℤ
2. v : ℤ List
3. ∀bs:ℤ List. ∀x:ℤ. ((↑v ≤_lex bs)
⇒ (↑insert-int(x;v) ≤_lex insert-int(x;bs)))
4. u1 : ℤ
5. v1 : ℤ List
6. ∀x:ℤ. ((↑[u / v] ≤_lex v1)
⇒ (↑insert-int(x;[u / v]) ≤_lex insert-int(x;v1)))
7. x : ℤ
8. ¬u < x
9. ↑[u / v] ≤_lex [u1 / v1]
10. u1 < x
11. u1 < u
⊢ ||[u / v]|| < ||insert-int(x;v1)||
Latex:
Latex:
1. u : \mBbbZ{}
2. v : \mBbbZ{} List
3. \mforall{}bs:\mBbbZ{} List. \mforall{}x:\mBbbZ{}. ((\muparrow{}v \mleq{}\_lex bs) {}\mRightarrow{} (\muparrow{}insert-int(x;v) \mleq{}\_lex insert-int(x;bs)))
4. u1 : \mBbbZ{}
5. v1 : \mBbbZ{} List
6. \mforall{}x:\mBbbZ{}. ((\muparrow{}[u / v] \mleq{}\_lex v1) {}\mRightarrow{} (\muparrow{}insert-int(x;[u / v]) \mleq{}\_lex insert-int(x;v1)))
7. x : \mBbbZ{}
8. \mneg{}u < x
9. \muparrow{}[u / v] \mleq{}\_lex [u1 / v1]
10. u1 < x
11. u1 < u
\mvdash{} \muparrow{}[x; [u / v]] \mleq{}\_lex [u1 / insert-int(x;v1)]
By
Latex:
((BLemma `intlex-cons` THEN Auto) THEN OrLeft THEN Auto)
Home
Index